Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Photochem Photobiol Sci ; 23(2): 339-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308169

RESUMO

Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.


Assuntos
COVID-19 , Raios Ultravioleta , Humanos , SARS-CoV-2 , Escherichia coli/efeitos da radiação , Desinfecção/métodos
2.
Immunology ; 170(4): 553-566, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688495

RESUMO

Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Modelos Animais de Doenças , Linfócitos B , Tolerância Imunológica
3.
Food Microbiol ; 101: 103877, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579845

RESUMO

Salmonella enterica subsp. enterica is one of the leading causes of human foodborne infections and several outbreaks are now associated with the consumption of fresh fruit and vegetables. This study aims at evaluating whether Salmonella virulence can be linked to an enhanced ability to survive successive digestive environments. Thirteen S. enterica strains were selected according to high and low virulence phenotypes. Lettuce inoculated separately with each S. enterica strain was used as food matrix in the TNO gastrointestinal model (TIM-1) of the human upper gastrointestinal tract. During the passage in the stomach, counts determined using PMA-qPCR were 2-5 logs higher than the cultivable counts for all strains indicating the presence of viable but non-cultivable cells. Bacterial growth was observed in the duodenum compartment after 180 min for all but one strain and growth continued into the ileal compartment. After passage through the simulated gastrointestinal tract, both virulent and avirulent S. enterica strains survived but high virulence strains had a significantly (p = 0.004) better average survival rate (1003 %-3753 %) than low virulence strains (from 25 % to 3730%). The survival rates of S. enterica strains could be linked to the presence of genes associated with acid and bile resistance and their predicted products. The presence of single nucleotide polymorphisms may also impact the function of virulence associated genes and play a role in the resulting phenotype. These data provide an understanding of the relationship between measured virulence potential and survival of S. enterica during dynamic simulated gastrointestinal transit.


Assuntos
Trato Gastrointestinal/microbiologia , Salmonella/patogenicidade , Virulência , Humanos , Modelos Biológicos
4.
Microorganisms ; 8(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650601

RESUMO

The emergence of multidrug-resistant bacterial strains worldwide has become a serious problem for public health over recent decades. The increase in antimicrobial resistance has been expanding via plasmids as mobile genetic elements encoding antimicrobial resistance (AMR) genes that are transferred vertically and horizontally. This study focuses on Salmonella enterica, one of the leading foodborne pathogens in industrialized countries. S. enterica is known to carry several plasmids involved not only in virulence but also in AMR. In the current paper, we present an integrated strategy to detect plasmid scaffolds in whole genome sequencing (WGS) assemblies. We developed a two-step procedure to predict plasmids based on i) the presence of essential elements for plasmid replication and mobility, as well as ii) sequence similarity to a reference plasmid. Next, to confirm the accuracy of the prediction in 1750 S. enterica short-read sequencing data, we combined Oxford Nanopore MinION long-read sequencing with Illumina MiSeq short-read sequencing in hybrid assemblies for 84 isolates to evaluate the proportion of plasmid that has been detected. At least one scaffold with an origin of replication (ORI) was predicted in 61.3% of the Salmonella isolates tested. The results indicated that IncFII and IncI1 ORIs were distributed in many S. enterica serotypes and were the most prevalent AMR genes carrier, whereas IncHI2A/IncHI2 and IncA/C2 were more serotype restricted but bore several AMR genes. Comparison between hybrid and short-read assemblies revealed that 81.1% of plasmids were found in the short-read sequencing using our pipeline. Through this process, we established that plasmids are prevalent in S. enterica and we also substantially expand the AMR genes in the resistome of this species.

5.
mSphere ; 5(3)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522778

RESUMO

Salmonella comprises more than 2,600 serovars. Very few environmental and uncommon serovars have been characterized for their potential role in virulence and human infections. A complementary in vitro and in vivo systematic high-throughput analysis of virulence was used to elucidate the association between genetic and phenotypic variations across Salmonella isolates. The goal was to develop a strategy for the classification of isolates as a benchmark and predict virulence levels of isolates. Thirty-five phylogenetically distant strains of unknown virulence were selected from the Salmonella Foodborne Syst-OMICS (SalFoS) collection, representing 34 different serovars isolated from various sources. Isolates were evaluated for virulence in 4 complementary models of infection to compare virulence traits with the genomics data, including interactions with human intestinal epithelial cells, human macrophages, and amoeba. In vivo testing was conducted using the mouse model of Salmonella systemic infection. Significant correlations were identified between the different models. We identified a collection of novel hypothetical and conserved proteins associated with isolates that generate a high burden. We also showed that blind prediction of virulence of 33 additional strains based on the pan-genome was high in the mouse model of systemic infection (82% agreement) and in the human epithelial cell model (74% agreement). These complementary approaches enabled us to define virulence potential in different isolates and present a novel strategy for risk assessment of specific strains and for better monitoring and source tracking during outbreaks.IMPORTANCESalmonella species are bacteria that are a major source of foodborne disease through contamination of a diversity of foods, including meat, eggs, fruits, nuts, and vegetables. More than 2,600 different Salmonella enterica serovars have been identified, and only a few of them are associated with illness in humans. Despite the fact that they are genetically closely related, there is enormous variation in the virulence of different isolates of Salmonella enterica Identification of foodborne pathogens is a lengthy process based on microbiological, biochemical, and immunological methods. Here, we worked toward new ways of integrating whole-genome sequencing (WGS) approaches into food safety practices. We used WGS to build associations between virulence and genetic diversity within 83 Salmonella isolates representing 77 different Salmonella serovars. Our work demonstrates the potential of combining a genomics approach and virulence tests to improve the diagnostics and assess risk of human illness associated with specific Salmonella isolates.


Assuntos
Células Epiteliais/microbiologia , Genoma Bacteriano , Salmonelose Animal/microbiologia , Salmonella/genética , Virulência , Acanthamoeba/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Genômica , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Filogenia , Salmonella/classificação , Salmonella/patogenicidade , Salmonelose Animal/sangue , Sorogrupo , Células THP-1 , Sequenciamento Completo do Genoma
6.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31636138

RESUMO

Salmonella is an intracellular bacterium found in the gastrointestinal tract of mammalian, avian, and reptilian hosts. Mouse models have been extensively used to model in vivo distinct aspects of human Salmonella infections and have led to the identification of several host susceptibility genes. We have investigated the susceptibility of Collaborative Cross strains to intravenous infection with Salmonella enterica serovar Typhimurium as a model of human systemic invasive infection. In this model, strain CC042/GeniUnc (CC042) mice displayed extreme susceptibility with very high bacterial loads and mortality. CC042 mice showed lower spleen weights and decreased splenocyte numbers before and after infection, affecting mostly CD8+ T cells, B cells, and all myeloid cell populations, compared with control C57BL/6J mice. CC042 mice also had lower thymus weights with a reduced total number of thymocytes and double-negative and double-positive (CD4+, CD8+) thymocytes compared to C57BL/6J mice. Analysis of bone marrow-resident hematopoietic progenitors showed a strong bias against lymphoid-primed multipotent progenitors. An F2 cross between CC042 and C57BL/6N mice identified two loci on chromosome 7 (Stsl6 and Stsl7) associated with differences in bacterial loads. In the Stsl7 region, CC042 carried a loss-of-function variant, unique to this strain, in the integrin alpha L (Itgal) gene, the causative role of which was confirmed by a quantitative complementation test. Notably, Itgal loss of function increased the susceptibility to S. Typhimurium in a (C57BL/6J × CC042)F1 mouse background but not in a C57BL/6J mouse inbred background. These results further emphasize the utility of the Collaborative Cross to identify new host genetic variants controlling susceptibility to infections and improve our understanding of the function of the Itgal gene.


Assuntos
Bacteriemia/genética , Antígeno CD11a/deficiência , Predisposição Genética para Doença , Mutação com Perda de Função , Infecções por Salmonella/genética , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Bacteriemia/imunologia , Bacteriemia/patologia , Carga Bacteriana , Medula Óssea/patologia , Modelos Animais de Doenças , Genes , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Infecções por Salmonella/patologia , Sorogrupo , Baço/patologia , Análise de Sobrevida , Timo/patologia
7.
Nat Microbiol ; 4(9): 1516-1531, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285585

RESUMO

Salmonella presents a global public health concern. Central to Salmonella pathogenicity is an ability to subvert host defences through strategically targeting host proteins implicated in restricting infection. Therefore, to gain insight into the host-pathogen interactions governing Salmonella infection, we performed an in vivo genome-wide mutagenesis screen to uncover key host defence proteins. This revealed an uncharacterized role of CYRI (FAM49B) in conferring host resistance to Salmonella infection. We show that CYRI binds to the small GTPase RAC1 through a conserved domain present in CYFIP proteins, which are known RAC1 effectors that stimulate actin polymerization. However, unlike CYFIP proteins, CYRI negatively regulates RAC1 signalling, thereby attenuating processes such as macropinocytosis, phagocytosis and cell migration. This enables CYRI to counteract Salmonella at various stages of infection, including bacterial entry into non-phagocytic and phagocytic cells as well as phagocyte-mediated bacterial dissemination. Intriguingly, to dampen its effects, the bacterial effector SopE, a RAC1 activator, selectively targets CYRI following infection. Together, this outlines an intricate host-pathogen signalling interplay that is crucial for determining bacterial fate. Notably, our study also outlines a role for CYRI in restricting infection mediated by Mycobacterium tuberculosis and Listeria monocytogenes. This provides evidence implicating CYRI cellular functions in host defence beyond Salmonella infection.


Assuntos
Infecções Bacterianas/prevenção & controle , Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Carga Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/genética , Resistência à Doença/genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/fisiologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Proteínas Mitocondriais/genética , Mutação , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Fagocitose , Ligação Proteica , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiologia , Análise de Sobrevida
8.
Mamm Genome ; 29(7-8): 558-576, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29785663

RESUMO

Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.


Assuntos
Resistência à Doença , Suscetibilidade a Doenças , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/fisiologia , Interações Hospedeiro-Patógeno , Alelos , Animais , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Locos de Características Quantitativas
9.
BMC Genomics ; 19(1): 303, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703142

RESUMO

BACKGROUND: Salmonella is a Gram-negative bacterium causing a wide range of clinical syndromes ranging from typhoid fever to diarrheic disease. Non-typhoidal Salmonella (NTS) serovars infect humans and animals, causing important health burden in the world. Susceptibility to salmonellosis varies between individuals under the control of host genes, as demonstrated by the identification of over 20 genetic loci in various mouse crosses. We have investigated the host response to S. Typhimurium infection in 35 Collaborative Cross (CC) strains, a genetic population which involves wild-derived strains that had not been previously assessed. RESULTS: One hundred and forty-eight mice from 35 CC strains were challenged intravenously with 1000 colony-forming units (CFUs) of S. Typhimurium. Bacterial load was measured in spleen and liver at day 4 post-infection. CC strains differed significantly (P < 0.0001) in spleen and liver bacterial loads, while sex and age had no effect. Two significant quantitative trait loci (QTLs) on chromosomes 8 and 10 and one suggestive QTL on chromosome 1 were found for spleen bacterial load, while two suggestive QTLs on chromosomes 6 and 17 were found for liver bacterial load. These QTLs are caused by distinct allelic patterns, principally involving alleles originating from the wild-derived founders. Using sequence variations between the eight CC founder strains combined with database mining for expression in target organs and known immune phenotypes, we were able to refine the QTLs intervals and establish a list of the most promising candidate genes. Furthermore, we identified one strain, CC042/GeniUnc (CC042), as highly susceptible to S. Typhimurium infection. CONCLUSIONS: By exploring a broader genetic variation, the Collaborative Cross population has revealed novel loci of resistance to Salmonella Typhimurium. It also led to the identification of CC042 as an extremely susceptible strain.


Assuntos
Cruzamentos Genéticos , Suscetibilidade a Doenças , Locos de Características Quantitativas , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/fisiologia , Animais , Mapeamento Cromossômico , Feminino , Variação Genética , Genética Populacional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
10.
Front Microbiol ; 8: 996, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626454

RESUMO

The Salmonella Syst-OMICS consortium is sequencing 4,500 Salmonella genomes and building an analysis pipeline for the study of Salmonella genome evolution, antibiotic resistance and virulence genes. Metadata, including phenotypic as well as genomic data, for isolates of the collection are provided through the Salmonella Foodborne Syst-OMICS database (SalFoS), at https://salfos.ibis.ulaval.ca/. Here, we present our strategy and the analysis of the first 3,377 genomes. Our data will be used to draw potential links between strains found in fresh produce, humans, animals and the environment. The ultimate goals are to understand how Salmonella evolves over time, improve the accuracy of diagnostic methods, develop control methods in the field, and identify prognostic markers for evidence-based decisions in epidemiology and surveillance.

11.
Front Immunol ; 8: 498, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507548

RESUMO

Retention of iron in tissue macrophages via upregulation of hepcidin (HAMP) and downregulation of the iron exporter ferroportin (FPN) is thought to participate in the establishment of anemia of inflammation after infection. However, an upregulation of FPN has been proposed to limit macrophages iron access to intracellular pathogens. Therefore, we studied the iron homeostasis and in particular the regulation of FPN after infection with Salmonella enterica serovar Typhimurium in mice presenting tissue macrophages with high iron (AcB61), basal iron (A/J and wild-type mice), or low iron (Hamp knock out, Hamp-/-) levels. The presence of iron in AcB61 macrophages due to extravascular hemolysis and strong erythrophagocytosis activity favored the proliferation of Salmonella in the spleen and liver with a concomitant decrease of FPN protein expression. Despite systemic iron overload, no or slight increase in Salmonella burden was observed in Hamp-/- mice compared to controls. Importantly, FPN expression at both mRNA and protein levels was strongly decreased during Salmonella infection in Hamp-/- mice. The repression of Fpn mRNA was also observed in Salmonella-infected cultured macrophages. In addition, the downregulation of FPN was associated with decreased iron stores in both the liver and spleen in infected mice. Our findings show that during Salmonella infection, FPN is repressed through an iron and hepcidin-independent mechanism. Such regulation likely provides the cellular iron indispensable for the growth of Salmonella inside the macrophages.

12.
Mamm Genome ; 28(1-2): 38-46, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27913859

RESUMO

Human infection with Salmonella is of global public health concern. In low- and middle-income countries, Salmonella infection is a major source of disease in terms of both mortality and morbidity, while in high-income nations, the pathogen is an ongoing threat to food security. The outcome of infection with Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) in mouse models is dependent upon a coordinated and complex immune response. A panel of recombinant congenic strains (RCS) derived from the reciprocal double backcross of A/J and C57BL/6J mice has been screened for their susceptibility to Salmonella infection, and the RCS AcB60 was identified to be the most resistant strain to Salmonella infection, more resistant than the parental strain A/J. These mice are known to carry resistant alleles at three well-defined Salmonella susceptibility loci, Slc11a1 Ity (solute carrier family 11 member 1; Immunity to Typhimurium locus), Pklr Ity4 (pyruvate kinase liver and red blood cell; Ity4 locus), and Ity5. In the current study, we used interval mapping to validate a locus on Chr 15, named Ity8, linked to Salmonella resistance in AcB60 mice. Global gene expression analysis during infection identified AcB60-specific expression of genes involved in Ccr7 signaling, including downstream effector Mapk11 (mitogen-activated protein kinase 11), located within the Ity8 interval, and representing a potential positional candidate gene. An additional region on Chr 18 of C57BL/6J descent was shown to be associated with increase resistance in AcB60. These observations provide an opportunity to achieve new insight into the complex genetics of resistance to Salmonella infection in the context of mouse models of human infection with Salmonella Typhimurium.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteína Quinase 11 Ativada por Mitógeno/genética , Receptores CCR7/genética , Infecções por Salmonella/genética , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Imunidade Inata/genética , Fígado/metabolismo , Camundongos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade
13.
Nat Immunol ; 17(1): 65-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595887

RESUMO

Viral respiratory tract infections are the main causative agents of the onset of infection-induced asthma and asthma exacerbations that remain mechanistically unexplained. Here we found that deficiency in signaling via type I interferon receptor led to deregulated activation of group 2 innate lymphoid cells (ILC2 cells) and infection-associated type 2 immunopathology. Type I interferons directly and negatively regulated mouse and human ILC2 cells in a manner dependent on the transcriptional activator ISGF3 that led to altered cytokine production, cell proliferation and increased cell death. In addition, interferon-γ (IFN-γ) and interleukin 27 (IL-27) altered ILC2 function dependent on the transcription factor STAT1. These results demonstrate that type I and type II interferons, together with IL-27, regulate ILC2 cells to restrict type 2 immunopathology.


Assuntos
Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Linfócitos/imunologia , Infecções Respiratórias/imunologia , Animais , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/patologia
14.
PLoS One ; 10(9): e0138222, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26375467

RESUMO

Coxsackievirus type B3 (CVB3) is a cardiotropic enterovirus. Infection causes cardiomyocyte necrosis and myocardial inflammation. The damaged tissue that results is replaced with fibrotic or calcified tissue, which can lead to permanently altered cardiac function. The extent of pathogenesis among individuals exposed to CVB3 is dictated by a combination of host genetics, viral virulence, and the environment. Here, we aimed to identify genes that modulate cardiopathology following CVB3 infection. 129S1 mice infected with CVB3 developed increased cardiac pathology compared to 129X1 substrain mice despite no difference in viral burden. Linkage analysis identified a major locus on chromosome 7 (LOD: 8.307, P<0.0001) that controlled the severity of cardiac calcification and necrosis following infection. Sub-phenotyping and genetic complementation assays identified Abcc6 as the underlying gene. Microarray expression profiling identified genotype-dependent regulation of genes associated with mitochondria. Electron microscopy examination showed elevated deposition of hydroxyapatite-like material in the mitochondrial matrices of infected Abcc6 knockout (Abcc6-/-) mice but not in wildtype littermates. Cyclosporine A (CsA) inhibits mitochondrial permeability transition pore opening by inhibiting cyclophilin D (CypD). Treatment of Abcc6 -/- mice with CsA reduced cardiac necrosis and calcification by more than half. Furthermore, CsA had no effect on the CVB3-induced phenotype of doubly deficient CypD-/-Abcc6-/- mice. Altogether, our work demonstrates that mutations in Abcc6 render mice more susceptible to cardiac calcification following CVB3 infection. Moreover, we implicate CypD in the control of cardiac necrosis and calcification in Abcc6-deficient mice, whereby CypD inhibition is required for cardioprotection.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Calcinose/tratamento farmacológico , Infecções por Coxsackievirus/tratamento farmacológico , Ciclosporina/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Inflamação/tratamento farmacológico , Miocardite/tratamento farmacológico , Animais , Calcinose/patologia , Calcinose/virologia , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Feminino , Imunossupressores/farmacologia , Inflamação/patologia , Inflamação/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Miocardite/patologia , Miocardite/virologia , Necrose
15.
EMBO J ; 34(12): 1612-29, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25896511

RESUMO

Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called "microgliopathies". However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. Here, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence. We further found that microglial Usp18 negatively regulates the activation of Stat1 and concomitant induction of interferon-induced genes, thereby terminating IFN signaling. The Usp18-mediated control was independent from its catalytic activity but instead required the interaction with Ifnar2. Additionally, the absence of Ifnar1 restored microglial activation, indicating a tonic IFN signal which needs to be negatively controlled by Usp18 under non-diseased conditions. These results identify Usp18 as a critical negative regulator of microglia activation and demonstrate a protective role of Usp18 for microglia function by regulating the Ifnar pathway. The findings establish Usp18 as a new molecule preventing destructive microgliopathy.


Assuntos
Encéfalo/metabolismo , Endopeptidases/deficiência , Interferons/metabolismo , Microglia/metabolismo , Modelos Neurológicos , Transdução de Sinais/fisiologia , Animais , Western Blotting , Clonagem Molecular , Primers do DNA/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Técnicas Histológicas , Camundongos , Camundongos Knockout , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Estatísticas não Paramétricas , Ubiquitina Tiolesterase
16.
Genes (Basel) ; 5(4): 887-925, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268389

RESUMO

Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

17.
Front Immunol ; 5: 375, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161653

RESUMO

Typhoid fever and salmonellosis, which are caused by Salmonella typhi and typhimurium, respectively, are responsible for significant morbidity and mortality in both developed and developing countries. We model typhoid fever using mice infected with Salmonella typhimurium, which results in a systemic disease, whereby the outcome of infection is variable in different inbred strains of mice. This model recapitulates several clinical aspects of the human disease and allows the study of the host response to Salmonella typhimurium infection in vivo. Previous work in our laboratory has identified three loci (Ity, Ity2, and Ity3) in the wild-derived MOLF/Ei mice influencing survival after infection with Salmonella typhimurium. Fine mapping of the Ity3 locus indicated that two sub-loci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. In the current paper, we provided further evidence supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying the Ity3.1 sub-locus. Gene expression profiling indicated that the Ity3.1 sub-locus defined a global gene expression signature with networks articulated around Ncf2. Furthermore, based on differential expression and complementation analysis using Selp (selectin-P) knock-out mice, Selp was identified as a strong candidate gene for the Ity3.2 sub-locus.

18.
PLoS One ; 9(2): e88009, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505352

RESUMO

Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice.


Assuntos
Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Infecções por Salmonella/genética , Infecções por Salmonella/imunologia , Salmonella/genética , Salmonella/imunologia , Animais , Mapeamento Cromossômico/métodos , Citocinas/imunologia , Feminino , Inflamação/imunologia , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Congênicos/genética , Camundongos Congênicos/imunologia , Camundongos Congênicos/microbiologia , Camundongos Endogâmicos C57BL , NADPH Oxidases/imunologia , Fenótipo , Espécies Reativas de Oxigênio/imunologia , Salmonelose Animal/genética , Salmonelose Animal/imunologia
19.
J Immunol ; 192(1): 259-70, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24285835

RESUMO

Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.


Assuntos
Regulação da Expressão Gênica , Predisposição Genética para Doença , Interferon gama/imunologia , Mutação , Fator de Transcrição STAT4/genética , Salmonelose Animal/genética , Salmonelose Animal/imunologia , Transcrição Gênica , Animais , Carga Bacteriana , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Proteínas de Transporte de Cátions/genética , Análise por Conglomerados , Análise Mutacional de DNA , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Loci Gênicos , Imunidade Inata/genética , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Mutação/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Compostos de Nitrosoureia/toxicidade , Linhagem , Salmonelose Animal/microbiologia , Salmonelose Animal/mortalidade , Salmonella typhimurium/imunologia , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Transcriptoma
20.
G3 (Bethesda) ; 3(10): 1753-8, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23979929

RESUMO

Using the N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we have identified two skeletal morphology mutants, Skm1 and Skm2. Positional cloning and candidate gene sequencing localized the causative point mutations within the genes coding for natriuretic peptide receptor C (NPR-C) and filamin b (FLNB), respectively. Mice that carry a mutation in Npr3 exhibit a skeletal overgrowth phenotype, resulting in an elongated body and kyphosis. Skm2 mice, carrying a mutation in Flnb, present with scoliosis and lordosis. These mutant mice will serve as useful models for the study of vertebral malformations.


Assuntos
Osso e Ossos/anormalidades , Filaminas/genética , Mutação de Sentido Incorreto , Receptores do Fator Natriurético Atrial/genética , Curvaturas da Coluna Vertebral/genética , Sequência de Aminoácidos , Animais , Etilnitrosoureia , Filaminas/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênicos , Receptores do Fator Natriurético Atrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA