Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Foods ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569144

RESUMO

Seafood elemental profiling (SEP) is the quantification of a range of elements in seafood products and may serve in addressing questions of seafood provenance and quality. Traditional methods for analyzing soft tissue present several limitations for the industry-level use of SEP. Portable handheld X-ray fluorescence (pXRF) analysis is a promising alternative to conventional methods; however, its application for biological analysis has not been fully established. Intact giant tiger prawn (Penaeus monodon) abdomens were analyzed with a Vanta M series XRF portable analyzer following a novel soft tissue protocol. Exploratory statistics (principal component analysis, nonmetric multidimensional scaling, and canonical discriminant analysis), as well as random forest models, have been implemented with pXRF profiles, yielding 81% accuracy when assigning the geographical origin of P. monodon. The results of this study highlight that SEP via pXRF is a viable industry-level analysis, and its application will depend on improved instrument calibration to account for fluctuating wetness factors that are influenced by cooking, storage, and other pre- and post-harvest treatments.

2.
Am J Physiol Gastrointest Liver Physiol ; 306(10): G826-38, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24722905

RESUMO

The intestinal microbiota plays a pivotal role in maintaining human health and well-being. Previously, we have shown that mice deficient in the brush-border enzyme intestinal alkaline phosphatase (IAP) suffer from dysbiosis and that oral IAP supplementation normalizes the gut flora. Here we aimed to decipher the molecular mechanism by which IAP promotes bacterial growth. We used an isolated mouse intestinal loop model to directly examine the effect of exogenous IAP on the growth of specific intestinal bacterial species. We studied the effects of various IAP targets on the growth of stool aerobic and anaerobic bacteria as well as on a few specific gut organisms. We determined the effects of ATP and other nucleotides on bacterial growth. Furthermore, we examined the effects of IAP on reversing the inhibitory effects of nucleotides on bacterial growth. We have confirmed that local IAP bioactivity creates a luminal environment that promotes the growth of a wide range of commensal organisms. IAP promotes the growth of stool aerobic and anaerobic bacteria and appears to exert its growth promoting effects by inactivating (dephosphorylating) luminal ATP and other luminal nucleotide triphosphates. We observed that compared with wild-type mice, IAP-knockout mice have more ATP in their luminal contents, and exogenous IAP can reverse the ATP-mediated inhibition of bacterial growth in the isolated intestinal loop. In conclusion, IAP appears to promote the growth of intestinal commensal bacteria by inhibiting the concentration of luminal nucleotide triphosphates.


Assuntos
Fosfatase Alcalina/fisiologia , Intestinos/microbiologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Fosfatase Alcalina/farmacologia , Ampicilina/farmacologia , Animais , Desoxirribonucleotídeos/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morganella morganii/efeitos dos fármacos , Fenilalanina/farmacologia , Inanição/fisiopatologia , Estreptomicina/farmacologia
3.
Ann Surg ; 259(4): 715-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23598380

RESUMO

OBJECTIVE: To determine the efficacy of oral supplementation of the gut enzyme intestinal alkaline phosphatase (IAP) in preventing antibiotic-associated infections from Salmonella enterica serovar Typhimurium (S. Typhimurium) and Clostridium difficile. BACKGROUND: The intestinal microbiota plays a pivotal role in human health and well-being. Antibiotics inherently cause dysbiosis, an imbalance in the number and composition of intestinal commensal bacteria, which leads to susceptibility to opportunistic bacterial infections. Previously, we have shown that IAP preserves the normal homeostasis of intestinal microbiota and that oral supplementation with calf IAP (cIAP) rapidly restores the normal gut flora. We hypothesized that oral IAP supplementation would protect against antibiotic-associated bacterial infections. METHODS: C57BL/6 mice were treated with antibiotic(s) ± cIAP in the drinking water, followed by oral gavage of S. Typhimurium or C. difficile. Mice were observed for clinical conditions and mortality. After a defined period of time, mice were killed and investigated for hematological, inflammatory, and histological changes. RESULTS: We observed that oral supplementation with cIAP during antibiotic treatment protects mice from infections with S. Typhimurium as well as with C. difficile. Animals given IAP maintained their weight, had reduced clinical severity and gut inflammation, and showed improved survival. CONCLUSIONS: Oral IAP supplementation protected mice from antibiotic-associated bacterial infections. We postulate that oral IAP supplementation could represent a novel therapy to protect against antibiotic-associated diarrhea (AAD), C. difficile-associated disease (CDAD), and other enteric infections in humans.


Assuntos
Fosfatase Alcalina/uso terapêutico , Antibacterianos/efeitos adversos , Clostridioides difficile , Infecções por Clostridium/prevenção & controle , Fármacos Gastrointestinais/uso terapêutico , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium , Administração Oral , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Animais , Antibacterianos/administração & dosagem , Biomarcadores/metabolismo , Infecções por Clostridium/etiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Diarreia/etiologia , Diarreia/prevenção & controle , Feminino , Fármacos Gastrointestinais/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/etiologia , Estreptomicina/administração & dosagem , Estreptomicina/efeitos adversos , Resultado do Tratamento
4.
Proc Natl Acad Sci U S A ; 110(17): 7003-8, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569246

RESUMO

Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.


Assuntos
Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Síndrome Metabólica/tratamento farmacológico , Absorção/efeitos dos fármacos , Administração Oral , Fosfatase Alcalina/administração & dosagem , Fosfatase Alcalina/genética , Animais , Compostos Azo , Linhagem Celular , Primers do DNA/genética , Lipopolissacarídeos , Fígado/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 304(6): G597-604, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23306083

RESUMO

Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.


Assuntos
Fosfatase Alcalina/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação , Doenças Inflamatórias Intestinais , Intestino Delgado/metabolismo , Difosfato de Uridina/metabolismo , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Células Cultivadas , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Interleucina-8/análise , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA