Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-39132053

RESUMO

Discrete DNA sites position meiotic recombination at hotspots. We sought to create four different, 15 bp long, candidate regulatory DNA sites within the ura4 reporter gene. Each effort employed a fission yeast-optimized CRISPR system (SpEDIT), optimal guide RNA, and one of four homologous recombination templates with 10 to 15 bp substitutions. Remarkably, every Ura - transformant analyzed had template-directed, PAM-disabling bp substitutions near (5-6 bp away from) the DSB but no DNA site-generating substitutions at distance (42-56 bp). An unsought novel allele, ura4-P127* , has two substitutions (C379T, C380A) that create a stop codon, rendering strains unable to grow without uracil.

2.
Nat Commun ; 15(1): 6104, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030241

RESUMO

G-quadruplexes (G4s) formed by guanine-rich nucleic acids induce genome instability through impeding DNA replication fork progression. G4s are stable DNA structures, the unfolding of which require the functions of DNA helicases. Pif1 helicase binds preferentially to G4 DNA and plays multiple roles in maintaining genome stability, but the mechanism by which Pif1 unfolds G4s is poorly understood. Here we report the co-crystal structure of Saccharomyces cerevisiae Pif1 (ScPif1) bound to a G4 DNA with a 5' single-stranded DNA (ssDNA) segment. Unlike the Thermus oshimai Pif1-G4 structure, in which the 1B and 2B domains confer G4 recognition, ScPif1 recognizes G4 mainly through the wedge region in the 1A domain that contacts the 5' most G-tetrad directly. A conserved Arg residue in the wedge is required for Okazaki fragment processing but not for mitochondrial function or for suppression of gross chromosomal rearrangements. Multiple substitutions at this position have similar effects on resolution of DNA duplexes and G4s, suggesting that ScPif1 may use the same wedge to unwind G4 and dsDNA. Our results reveal the mechanism governing dsDNA unwinding and G4 unfolding by ScPif1 helicase that can potentially be generalized to other eukaryotic Pif1 helicases and beyond.


Assuntos
DNA Helicases , Quadruplex G , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Helicases/metabolismo , DNA Helicases/química , DNA Helicases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Replicação do DNA , Instabilidade Genômica
3.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38440330

RESUMO

The ura4 gene of the fission yeast Schizosaccharomyces pombe supports both positive and negative selection; consequently, this gene is widely employed as a powerful tool to study diverse biological processes. Here we report the DNA sequences of two functionally null alleles, ura4-595 and ura4-294 . The ura4-595 allele has a four bp duplication of bp +63 to +66 (5'-CAAG-3') within the ORF and the ura4-294 allele has a nonsynonymous substitution (G to A) at bp +679. We infer that these alleles arose, respectively, by DNA polymerase template slipping and by nucleotide misincorporation (likely via cytosine deamination).

4.
Methods Enzymol ; 672: 1-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934470

RESUMO

Helicases catalyze the unwinding of duplex nucleic acids to aid a variety of cellular processes. Although helicases unwind duplex DNA in the same direction that they translocate on single-stranded DNA, forked duplexes provide opportunities to monitor unwinding by helicase monomers bound to each arm of the fork. The activity of the helicase bound to the displaced strand can be discerned alongside the helicase bound to the translocase strand using a forked substrate with accessible duplexes on both strands labeled with different fluorophores. In order to quantify the effect of protein-protein interactions on the activity of multiple monomers of the Bacteroides fragilis Pif1 helicase bound to separate strands of a forked DNA junction, an ensemble gel-based assay for monitoring simultaneous duplex unwinding was developed (Su et al., 2019). Here, the use of that assay is described for measuring the total product formation and rate constants of product formation of multiple duplexes on a single nucleic acid substrate. Use of this assay may aid characterization of protein-protein interactions between multiple helicase monomers at forked nucleic acid junctions and can assist with the characterization of helicase action on the displaced strand of forked duplexes.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Catálise , DNA/química , DNA Helicases/química
5.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409096

RESUMO

Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.


Assuntos
Quadruplex G , Proteínas de Saccharomyces cerevisiae , DNA Helicases/metabolismo , Replicação do DNA , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Protein Sci ; 31(2): 407-421, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761452

RESUMO

Helicases are molecular motors with many activities. They use the energy from ATP hydrolysis to unwind double-stranded nucleic acids while translocating on the single-stranded DNA. In addition to unwinding, many helicases are able to remove proteins from nucleic acids. Bacteriophage T4 Dda is able to displace a variety of DNA binding proteins and streptavidin bound to biotinylated oligonucleotides. We have identified a subdomain of Dda that when deleted, results in a protein variant that has nearly wild type activity for unwinding double-stranded DNA but exhibits greatly reduced streptavidin displacement activity. Interestingly, this domain has little effect on displacement of either gp32 or BamHI bound to DNA but does affect displacement of trp repressor from DNA. With this variant, we have identified residues which enhance displacement of some proteins from DNA.


Assuntos
Bacteriófago T4 , DNA Helicases , Proteínas Virais , Proteínas de Bactérias , Bacteriófago T4/enzimologia , DNA/química , DNA Helicases/química , DNA de Cadeia Simples/genética , Proteínas Repressoras , Estreptavidina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA