Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS Biol ; 22(4): e3002232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662644

RESUMO

Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.


Assuntos
Genótipo , Hordeum , Microbiota , Raízes de Plantas , Pseudomonas , Rizosfera , Hordeum/microbiologia , Hordeum/genética , Hordeum/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/fisiologia , Microbiota/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/fisiologia , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
5.
Microorganisms ; 11(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37317190

RESUMO

Bacteria belonging to the genus Pseudomonas (the pseudomonads) are a group of Gammaproteobacteria that are characterized by a high metabolic versatility and adaption to different ecological niches [...].

6.
Nat Microbiol ; 8(8): 1520-1533, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291227

RESUMO

Efficient colonization of mucosal surfaces is essential for opportunistic pathogens like Pseudomonas aeruginosa, but how bacteria collectively and individually adapt to optimize adherence, virulence and dispersal is largely unclear. Here we identified a stochastic genetic switch, hecR-hecE, which is expressed bimodally and generates functionally distinct bacterial subpopulations to balance P. aeruginosa growth and dispersal on surfaces. HecE inhibits the phosphodiesterase BifA and stimulates the diguanylate cyclase WspR to increase c-di-GMP second messenger levels and promote surface colonization in a subpopulation of cells; low-level HecE-expressing cells disperse. The fraction of HecE+ cells is tuned by different stress factors and determines the balance between biofilm formation and long-range cell dispersal of surface-grown communities. We also demonstrate that the HecE pathway represents a druggable target to effectively counter P. aeruginosa surface colonization. Exposing such binary states opens up new ways to control mucosal infections by a major human pathogen.


Assuntos
Aderência Bacteriana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Biofilmes
7.
mBio ; 14(4): e0358922, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37366628

RESUMO

Vesiculation is a process employed by Gram-negative bacteria to release extracellular vesicles (EVs) into the environment. EVs from pathogenic bacteria play functions in host immune modulation, elimination of host defenses, and acquisition of nutrients from the host. Here, we observed EV production of the bacterial speck disease causal agent, Pseudomonas syringae pv. tomato (Pto) DC3000, as outer membrane vesicle release. Mass spectrometry identified 369 proteins enriched in Pto DC3000 EVs. The EV samples contained known immunomodulatory proteins and could induce plant immune responses mediated by bacterial flagellin. Having identified two biomarkers for EV detection, we provide evidence for Pto DC3000 releasing EVs during plant infection. Bioinformatic analysis of the EV-enriched proteins suggests a role for EVs in antibiotic defense and iron acquisition. Thus, our data provide insights into the strategies this pathogen may use to develop in a plant environment. IMPORTANCE The release of extracellular vesicles (EVs) into the environment is ubiquitous among bacteria. Vesiculation has been recognized as an important mechanism of bacterial pathogenesis and human disease but is poorly understood in phytopathogenic bacteria. Our research addresses the role of bacterial EVs in plant infection. In this work, we show that the causal agent of bacterial speck disease, Pseudomonas syringae pv. tomato, produces EVs during plant infection. Our data suggest that EVs may help the bacteria to adapt to environments, e.g., when iron could be limiting such as the plant apoplast, laying the foundation for studying the factors that phytopathogenic bacteria use to thrive in the plant environment.


Assuntos
Vesículas Extracelulares , Solanum lycopersicum , Humanos , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Proteômica , Flagelina/metabolismo , Vesículas Extracelulares/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo
8.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36958858

RESUMO

Plasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid-host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear. Here, we show a substantial fitness cost of carrying the large conjugative plasmid pQBR103 in Pseudomonas fluorescens SBW25 in the plant rhizosphere. This plasmid fitness cost could be ameliorated by compensatory mutations affecting the chromosomal global regulatory system gacA/gacS, which arose rapidly in plant rhizosphere communities and were exclusive to plasmid carriers. These findings expand our understanding of the importance of compensatory evolution in plasmid dynamics beyond simplified lab media. Compensatory mutations contribute to plasmid survival in bacterial populations living within complex microbial communities in their environmental niche.


Assuntos
Pseudomonas fluorescens , Rizosfera , Plasmídeos/genética , Mutação , Pseudomonas fluorescens/genética
9.
PLoS Biol ; 21(2): e3001988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787297

RESUMO

Beyond their role in horizontal gene transfer, conjugative plasmids commonly encode homologues of bacterial regulators. Known plasmid regulator homologues have highly targeted effects upon the transcription of specific bacterial traits. Here, we characterise a plasmid translational regulator, RsmQ, capable of taking global regulatory control in Pseudomonas fluorescens and causing a behavioural switch from motile to sessile lifestyle. RsmQ acts as a global regulator, controlling the host proteome through direct interaction with host mRNAs and interference with the host's translational regulatory network. This mRNA interference leads to large-scale proteomic changes in metabolic genes, key regulators, and genes involved in chemotaxis, thus controlling bacterial metabolism and motility. Moreover, comparative analyses found RsmQ to be encoded on a large number of divergent plasmids isolated from multiple bacterial host taxa, suggesting the widespread importance of RsmQ for manipulating bacterial behaviour across clinical, environmental, and agricultural niches. RsmQ is a widespread plasmid global translational regulator primarily evolved for host chromosomal control to manipulate bacterial behaviour and lifestyle.


Assuntos
Bactérias , Proteômica , Plasmídeos/genética , Bactérias/genética , Conjugação Genética/genética , Transferência Genética Horizontal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Proteins ; 91(3): 300-314, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36134899

RESUMO

Bacteria are equipped with a diverse set of regulatory tools that allow them to quickly adapt to their environment. The RimK system allows for Pseudomonas spp. to adapt through post-transcriptional regulation by altering the ribosomal subunit RpsF. RimK is found in a wide range of bacteria with a conserved amino acid sequence, however, the genetic context and the role of this protein is highly diverse. By solving and comparing the structures of RimK homologs from two related but functionally divergent systems, we uncovered key structural differences that likely contribute to the different activity levels of each of these homologs. Moreover, we were able to clearly resolve the active site of this protein for the first time, resolving binding of the glutamate substrate. This work advances our understanding of how subtle differences in protein sequence and structure can have profound effects on protein activity, which can in turn result in widespread mechanistic changes.


Assuntos
Pseudomonas , Ribossomos , Ribossomos/metabolismo , Sequência de Aminoácidos , Ácido Glutâmico/metabolismo
11.
CABI Agric Biosci ; 4(1): 53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38800117

RESUMO

Plant microbiomes are the microbial communities essential to the functioning of the phytobiome-the system that consist of plants, their environment, and their associated communities of organisms. A healthy, functional phytobiome is critical to crop health, improved yields and quality food. However, crop microbiomes are relatively under-researched, and this is associated with a fundamental need to underpin phytobiome research through the provision of a supporting infrastructure. The UK Crop Microbiome Cryobank (UKCMC) project is developing a unique, integrated and open-access resource to enable the development of solutions to improve soil and crop health. Six economically important crops (Barley, Fava Bean, Oats, Oil Seed Rape, Sugar Beet and Wheat) are targeted, and the methods as well as data outputs will underpin research activity both in the UK and internationally. This manuscript describes the approaches being taken, from characterisation, cryopreservation and analysis of the crop microbiome through to potential applications. We believe that the model research framework proposed is transferable to different crop and soil systems, acting not only as a mechanism to conserve biodiversity, but as a potential facilitator of sustainable agriculture systems.

12.
mBio ; 13(6): e0273422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374078

RESUMO

Bioaugmentation of biological sand filters with Mn(II)-oxidizing bacteria (MOB) is used to increase the efficiency of Mn removal from groundwater. While the biofilm-forming ability of MOB is important to achieve optimal Mn filtration, the regulatory link between biofilm formation and Mn(II) oxidation remains unclear. Here, an environmental isolate of Pseudomonas resinovorans strain MOB-513 was used as a model to investigate the role of c-di-GMP, a second messenger crucially involved in the regulation of biofilm formation by Pseudomonas, in the oxidation of Mn(II). A novel role for c-di-GMP in the upregulation of Mn(II) oxidation through induction of the expression of manganese-oxidizing peroxidase enzymes was revealed. MOB-513 macrocolony biofilms showed a strikingly stratified pattern of biogenic Mn oxide (BMnOx) accumulation in a localized top layer. Remarkably, elevated cellular levels of c-di-GMP correlated not only with increased accumulation of BMnOx in the same top layer but also with the appearance of a second BMnOx stratum in the bottom region of macrocolony biofilms, and the expression of mop genes correlated with this pattern. Proteomic analysis under Mn(II) conditions revealed changes in the abundance of a PilZ domain protein. Subsequent analyses supported a model in which this protein sensed c-di-GMP and affected a regulatory cascade that ultimately inhibited mop gene expression, providing a molecular link between c-di-GMP signaling and Mn(II) oxidation. Finally, we observed that high c-di-GMP levels were correlated with higher lyophilization efficiencies and higher groundwater Mn(II) oxidation capacities of freeze-dried bacterial cells, named lyophiles, showing the biotechnological relevance of understanding the role of c-di-GMP in MOB-513. IMPORTANCE The presence of Mn(II) in groundwater, a common source of drinking water, is a cause of water quality impairment, interfering with its disinfection, causing operation problems, and affecting human health. Purification of groundwater containing Mn(II) plays an important role in environmental and social safety. The typical method for Mn(II) removal is based on bacterial oxidation of metals to form insoluble oxides that can be filtered out of the water. Evidence of reducing the start-up periods and enhancing Mn removal efficiencies through bioaugmentation with appropriate biofilm-forming and MOB has emerged. As preliminary data suggest a link between these two phenotypes in Pseudomonas strains, the need to investigate the underlying regulatory mechanisms is apparent. The significance of our research lies in determining the role of c-di-GMP for increased biofilm formation and Mn(II)-oxidizing capabilities in MOB, which will allow the generation of super-biofilm-elaborating and Mn-oxidizing strains, enabling their implementation in biotechnological applications.


Assuntos
Proteômica , Pseudomonas , Humanos , Pseudomonas/metabolismo , GMP Cíclico/metabolismo , Oxirredução , Biofilmes , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
13.
Curr Opin Microbiol ; 70: 102199, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108394

RESUMO

Plant-associated fungi are incredibly diverse, comprising over a million species of mycorrhiza, endophytes, saprophytes and pathogens worldwide. This diverse fungal community is highly important for plant health. Many fungi are effective biocontrol agents that can kill or suppress fungal pathogens, with pathogen biocontrol found for both individual microorganisms and plant-associated fungal consortia. Meanwhile, increased plant community diversity aboveground corresponds to an increase in below-ground fungal community diversity, which contributes in turn to improved rhizosphere soil health and pathogen suppression. In this review, we discuss the role of fungal diversity in soil health and plant disease suppression and the various mechanisms by which mycorrhizal and endophytic fungi combat plant pathogenic fungi. We also discuss the array of diagnostic tools, both well-established and newly developed, which are revolutionising fungal pathogen detection and rhizosphere community analysis.


Assuntos
Micorrizas , Solo , Raízes de Plantas/microbiologia , Rizosfera , Doenças das Plantas/microbiologia , Fungos/genética , Plantas/microbiologia
14.
NPJ Biofilms Microbiomes ; 8(1): 64, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982053

RESUMO

Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was known to positively regulate the production of the major virulence factor exotoxin A and now, through analysis of genetic changes between two sublines of P. aeruginosa PAO1 and functional complementation of swarming, we have identified a previously unknown role of ToxR in surface-associated motility in P. aeruginosa. Further analysis revealed that ToxR had an impact on swarming motility by regulating the Rhl quorum sensing system and subsequent production of rhamnolipid surfactants. Additionally, ToxR was found to tightly bind cyclic diguanylate (c-di-GMP) and negatively affect traits controlled by this second messenger including reducing biofilm formation and the expression of Psl and Pel exopolysaccharides, necessary for attachment and sessile communities matrix scaffolding, in P. aeruginosa. Moreover, a link between the post-transcriptional regulator RsmA and toxR expression via the alternative sigma factor PvdS, induced under iron-limiting conditions, is established. This study reveals the importance of ToxR in a sophisticated regulation of free-living and biofilm-associated lifestyles, appropriate for establishing acute or chronic P. aeruginosa infections.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Pseudomonas aeruginosa/fisiologia
15.
J Exp Bot ; 73(7): 2206-2221, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34905021

RESUMO

Prior to infection, phytopathogenic bacteria face a challenging environment on the plant surface, where they are exposed to nutrient starvation and abiotic stresses. Pathways enabling surface adhesion, stress tolerance, and epiphytic survival are important for successful plant pathogenesis. Understanding the roles and regulation of these pathways is therefore crucial to fully understand bacterial plant infections. The phytopathogen Pseudomonas syringae pv. tomato (Pst) encodes multiple polysaccharides that are implicated in biofilm formation, stress survival, and virulence in other microbes. To examine how these polysaccharides impact Pst epiphytic survival and pathogenesis, we analysed mutants in multiple polysaccharide loci to determine their intersecting contributions to epiphytic survival and infection. In parallel, we used qRT-PCR to analyse the regulation of each pathway. Pst polysaccharides are tightly coordinated by multiple environmental signals. Nutrient availability, temperature, and surface association strongly affect the expression of different polysaccharides under the control of the signalling protein genes ladS and cbrB and the second messenger cyclic-di-GMP. Furthermore, functionally redundant, combinatorial phenotypes were observed for several polysaccharides. Exopolysaccharides play a role in mediating leaf adhesion, while α-glucan and alginate together confer desiccation tolerance. Our results suggest that polysaccharides play important roles in overcoming environmental challenges to Pst during plant infection.


Assuntos
Pseudomonas syringae , Solanum lycopersicum , Proteínas de Bactérias/metabolismo , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Plantas/metabolismo , Polissacarídeos/metabolismo , Pseudomonas syringae/fisiologia , Virulência/genética
16.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34792466

RESUMO

Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs.


Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques ­ for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Solanum tuberosum/microbiologia , Streptomyces/fisiologia , Cianeto de Hidrogênio/metabolismo , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Pseudomonas fluorescens/metabolismo
17.
PLoS Genet ; 17(4): e1009524, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872310

RESUMO

An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress.


Assuntos
Glucanos/genética , Pseudomonas aeruginosa/genética , Estresse Fisiológico/genética , Trealose/genética , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Vias Biossintéticas/genética , Glucanos/biossíntese , Interações Hospedeiro-Patógeno/genética , Humanos , Espectroscopia de Ressonância Magnética , Pressão Osmótica/fisiologia , Pseudomonas aeruginosa/patogenicidade
19.
Microbiologyopen ; 9(12): e1133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33225533

RESUMO

Common bottlenecks in environmental and crop microbiome studies are the consumable and personnel costs necessary for genomic DNA extraction and sequencing library construction. This is harder for challenging environmental samples such as soil, which is rich in Polymerase Chain Reaction (PCR) inhibitors. To address this, we have established a low-cost genomic DNA extraction method for soil samples. We also present an Illumina-compatible 16S and ITS rRNA gene amplicon library preparation workflow that uses common laboratory equipment. We evaluated the performance of our genomic DNA extraction method against two leading commercial soil genomic DNA kits (MoBio PowerSoil® and MP Biomedicals™ FastDNA™ SPIN) and a recently published non-commercial extraction method by Zou et al. (PLoS Biology, 15, e2003916, 2017). Our benchmarking experiment used four different soil types (coniferous, broad-leafed, and mixed forest plus a standardized cereal crop compost mix) assessing the quality and quantity of the extracted genomic DNA by analyzing sequence variants of 16S V4 and ITS rRNA amplicons. We found that our genomic DNA extraction method compares well to both commercially available genomic DNA extraction kits in DNA quality and quantity. The MoBio PowerSoil® kit, which relies on silica column-based DNA extraction with extensive washing, delivered the cleanest genomic DNA, for example, best A260:A280 and A260:A230 absorbance ratios. The MP Biomedicals™ FastDNA™ SPIN kit, which uses a large amount of binding material, yielded the most genomic DNA. Our method fits between the two commercial kits, producing both good yields and clean genomic DNA with fragment sizes of approximately 10 kb. Comparative analysis of detected amplicon sequence variants shows that our method correlates well with the two commercial kits. Here, we present a low-cost genomic DNA extraction method for soil samples that can be coupled to an Illumina-compatible simple two-step amplicon library construction workflow for 16S V4 and ITS marker genes. Our method delivers high-quality genomic DNA at a fraction of the cost of commercial kits and enables cost-effective, large-scale amplicon sequencing projects. Notably, our extracted gDNA molecules are long enough to be suitable for downstream techniques such as full gene sequencing or even metagenomics shotgun approaches using long reads (PacBio or Nanopore), 10x Genomics linked reads, and Dovetail genomics.


Assuntos
DNA Bacteriano/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Microbiota/genética , Microbiologia do Solo , DNA Bacteriano/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Solo
20.
PLoS Genet ; 16(6): e1008837, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32584816

RESUMO

Control of mRNA translation is a crucial regulatory mechanism used by bacteria to respond to their environment. In the soil bacterium Pseudomonas fluorescens, RimK modifies the C-terminus of ribosomal protein RpsF to influence important aspects of rhizosphere colonisation through proteome remodelling. In this study, we show that RimK activity is itself under complex, multifactorial control by the co-transcribed phosphodiesterase trigger enzyme (RimA) and a polyglutamate-specific protease (RimB). Furthermore, biochemical experimentation and mathematical modelling reveal a role for the nucleotide second messenger cyclic-di-GMP in coordinating these activities. Active ribosome regulation by RimK occurs by two main routes: indirectly, through changes in the abundance of the global translational regulator Hfq and directly, with translation of surface attachment factors, amino acid transporters and key secreted molecules linked specifically to RpsF modification. Our findings show that post-translational ribosomal modification functions as a rapid-response mechanism that tunes global gene translation in response to environmental signals.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Perfilação da Expressão Gênica , Peptídeo Sintases/genética , Peptídeo Sintases/isolamento & purificação , Peptídeo Sintases/metabolismo , Biossíntese de Proteínas , Proteoma/genética , Proteômica , Pseudomonas fluorescens/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rizosfera , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA