Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Dokl Biochem Biophys ; 512(1): 245-250, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38093124

RESUMO

DNA polymerase λ (Polλ) belongs to the same structural X-family as DNA polymerase ß, the main polymerase of base excision repair. The role of Polλ in this process remains not fully understood. A significant difference between the two DNA polymerases is the presence of an extended non-catalytic N-terminal region in the Polλ structure. The influence of this region on the interaction of Polλ with DNA and multifunctional proteins, poly(ADP-ribose)polymerase 1 (PARP1) and replication protein A (RPA), was studied in detail for the first time. The data obtained suggest that non-catalytic Polλ domains play a suppressor role both in relation to the polymerase activity of the enzyme and in interaction with DNA and PARP1.


Assuntos
DNA Polimerase beta , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA
2.
Biochemistry (Mosc) ; 84(9): 1008-1020, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31693460

RESUMO

Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Nucleotídeos/metabolismo , Processamento de Proteína Pós-Traducional , Humanos
3.
Biochemistry (Mosc) ; 81(3): 233-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27262192

RESUMO

The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms - NER and BER, respectively. Interaction of NER protein XPC-RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N(2)-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC-RAD23B crosslinks to DNA containing (+)-trans-BPDE-N(2)-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N(2)-dG isomers depends on the AP site position in the opposite strand. The influence of XPC-RAD23B on hydrolysis of an AP site clustered with BPDE-N(2)-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC-RAD23B was shown to stimulate the endonuclease and inhibit the 3'-5' exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.


Assuntos
Benzo(a)pireno/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , DNA/metabolismo , Marcadores de Afinidade , Sequência de Bases , Benzo(a)pireno/química , DNA/química , Adutos de DNA/química , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
5.
Biochemistry (Mosc) ; 80(2): 219-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25756536

RESUMO

The nucleotide excision repair system (NER) is one of the main mechanisms protecting cellular DNA from lesions caused by such significant environmental factors as UV radiation, the influence of polycyclic aromatic hydrocarbons, and medical treatment by several antitumor drugs, e.g. cisplatin. One of the major NER components is XPC-HR23B, the key factor during the damage recognition step of repair. Binding of XPC-HR23B to DNA that contains different bulky lesions impairing the structure of DNA is the basis for the wide substrate specificity of this DNA repair pathway. The multifunctional protein YB-1 among other protein factors has high affinity towards damaged DNA. Involvement of YB-1 in the cellular response to genotoxic stress and its ability to interact with damaged DNA harboring lesions of various origins pinpoint its putative involvement as a modulatory factor in DNA damage recognition and verification steps of NER. In the present work, we assayed functional interactions of protein factors XPC-HR23B and YB-1 upon binding to DNA structures mimicking damaged DNA containing single bulky lesions, as substrates of NER, and bulky lesions combined with abasic sites as an example of clustered lesions. The results indicate that YB-1 and XPC-HR23B stimulate each other in binding to DNA containing a bulky or clustered lesion, which suggests the involvement of YB-1 in the regulation of DNA repair by the NER mechanism.


Assuntos
Adutos de DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Humanos , Especificidade por Substrato
6.
Biochemistry (Mosc) ; 79(6): 545-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25100013

RESUMO

Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E >> K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.


Assuntos
Reparo do DNA , DNA/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Substituição de Aminoácidos , Sequência de Bases , DNA/química , Dano ao DNA , Escherichia coli/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/genética
7.
Biochemistry (Mosc) ; 77(4): 346-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22809153

RESUMO

We have examined the influence of centrin 2 (Cen2) on the interaction of nucleotide excision repair factors (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes bearing the dUMP derivative 5-{3-[6-(carboxyamidofluoresceinyl)amidocapromoyl]allyl}-2'-deoxyuridine-5'-monophosphate. The fluorescein residue linked to the nucleotide base imitates a bulky lesion of DNA. Cen2 stimulated the binding and increased the yield of DNA adducts with XPC-HR23b, a protein recognizing bulky damages in DNA. Stimulation of the binding was most pronounced in the presence of Mg(2+) and demonstrated a bell-shaped dependence on Cen2 concentration. The addition of Cen2 changed the stoichiometry of RPA-DNA complexes and diminished the yield of RPA-DNA covalent crosslinks. We have shown that Cen2 influences the binding of RPA and XPA with DNA, which results in formation of additional DNA-protein complexes possibly including Cen2. We have also found some evidence of direct contacts between Cen2 and DNA. These results in concert with the literature data suggest that Cen2 can be a regulatory element in the nucleotide excision repair system.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
8.
Biochemistry (Mosc) ; 77(5): 524-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22813594

RESUMO

The interaction of nucleotide excision repair (NER) proteins (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes containing the bulky lesion-mimicking fluorescein-substituted derivative of dUMP (5-{3-[6-(carboxyamidofluoresceinyl)amidocapromoyl]allyl}-2'-deoxyuridine-5'-monophosphate) in a cluster with a lesion of another type (apurinic/apyrimidinic (AP) site) has been studied. It is shown that XPC-HR23b is modified to a greater extent by the DNA duplex containing an AP site opposite nucleotide adjacent to the fluorescein residue than by DNA containing an AP site shifted to the 3'- or 5'-end of the DNA strand. The efficiency of XPA modification by DNA duplexes containing both AP site and fluorescein residue is higher than that by DNA lacking the bulky lesion; the modification pattern in this case depends on the AP site position. In accordance with its major function, RPA interacts more efficiently with single-stranded DNA than with DNA duplexes, including those bearing bulky lesions. The observed interaction between the proteins involved in nucleotide excision repair and DNA structures containing a bulky lesion processed by NER and the AP site repaired via base excision repair may be significant for both these repair pathways in cells and requires the specific sequence of repair of clustered DNA lesions.


Assuntos
Reparo do DNA , DNA/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Sequência de Bases , DNA/química , DNA de Cadeia Simples/metabolismo , Nucleotídeos de Desoxiuracil/química , Nucleotídeos de Desoxiuracil/metabolismo , Dimerização , Fluoresceínas/química , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
9.
Biochemistry (Mosc) ; 74(5): 491-501, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19538122

RESUMO

Photoactivated DNA analogs of nucleotide excision repair (NER) substrates have been created that are 48-mer duplexes containing in internal positions pyrimidine nucleotides with bulky substituents imitating lesions. Fluorochloroazidopyridyl, anthracenyl, and pyrenyl groups introduced using spacer fragments at 4N and 5C positions of dCMP and dUMP were used as model damages. The gel retardation and photo-induced affinity modification techniques were used to study the interaction of modified DNA duplexes with proteins in HeLa cell extracts containing the main components of NER protein complexes. It is shown that the extract proteins selectively bind and form covalent adducts with the model DNA. The efficiency and selectivity of protein modification depend on the structure of used DNA duplex. Apparent molecular masses of extract proteins, undergoing modification, were estimated. Mutual influence of simultaneous presence of extract proteins and recombinant NER protein factors XPC-HR23B, XPA, and RPA on interaction with the model DNA was analyzed. The extract proteins and RPA competed for interaction with photoactive DNA, mutually decreasing the yield of modification products. In this case the presence of extract proteins at particular concentrations tripled the increase in yield of covalent adducts formed by XPC. It is supposed that the XPC subunit interaction with DNA is stimulated by endogenous HR23B present in the extract. Most likely, the mutual effect of XPA and extract proteins stimulating formation of covalent adducts with model DNA is due to the interaction of XPA with endogenous RPA of the extract. A technique based on the use of specific antibodies revealed that RPA present in the extract is a modification target for photoactive DNA imitating NER substrates.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Células HeLa , Humanos , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/metabolismo , Ligação Proteica , Proteína de Replicação A/genética , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/genética
10.
Biochemistry (Mosc) ; 73(8): 886-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18774935

RESUMO

The interaction of nucleotide excision repair factors--xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)--with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Sequência de Bases , DNA/genética , DNA/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/genética , Nucleotídeos de Desoxiuracil/química , Nucleotídeos de Desoxiuracil/metabolismo , Fluordesoxiuridilato/química , Fluordesoxiuridilato/metabolismo , Humanos , Luz , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/efeitos da radiação , Dados de Sequência Molecular , Estrutura Molecular , Proteína de Replicação A/genética , Alinhamento de Sequência , Proteína de Xeroderma Pigmentoso Grupo A/genética
11.
Biochemistry (Mosc) ; 71(3): 270-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16545063

RESUMO

Interaction of nucleotide excision repair factors--replication protein A (RPA) and Xeroderma pigmentosum complementing group A protein (XPA)--with DNA structures containing nucleotides with bulky photoreactive groups imitating damaged nucleotides was investigated. Efficiency of photoaffinity modification of two proteins by photoreactive DNAs varied depending on DNA structure and type of photoreactive group. The secondary structure of DNA and, first of all, the presence of extended single-stranded parts plays a key role in recognition by RPA. However, it was shown that RPA efficiently interacts with DNA duplex containing a bulky substituent at the 5 -end of a nick. XPA was shown to prefer the nicked DNA; however, this protein was cross-linked with approximately equal efficiency by single-stranded and double-stranded DNA containing a bulky substituent inside the strand. XPA seems to be sensitive not only to the structure of DNA double helix, but also to a bulky group incorporated into DNA. The mechanism of damage recognition in the process of nucleotide excision repair is discussed.


Assuntos
DNA , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Marcadores de Fotoafinidade/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA