Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 844877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721743

RESUMO

A subpopulation of adipocytes in the major adipose depots of mice is produced from hematopoietic stem cells rather than mesenchymal progenitors that are the source of conventional white and brown/beige adipocytes. To analyze the impact of hematopoietic stem cell-derived adipocytes (HSCDAs) in the adipose niche we transplanted HSCs in which expression of a diphtheria toxin gene was under the control of the adipocyte-specific adiponectin gene promoter into irradiated wild type recipients. Thus, only adipocytes produced from HSC would be ablated while conventional white and brown adipocytes produced from mesenchymal progenitor cells would be spared. Wild type mice transplanted with HSCs from mice containing a reporter gene, but not the diphtheria toxin gene, regulated by the adiponectin gene promoter served as controls. In mice in which HSCDA production was suppressed, adipocyte size declined while adipose depot weights were unchanged and the number of conventional adipocyte progenitors significantly increased. We also measured a paradoxical increase in circulating leptin levels while physical activity was significantly decreased in the HSCDA depleted mice. Finally, insulin sensitivity was significantly reduced in HSCDA depleted mice. In contrast, loss of HSCDA production had no effect on body weight, components of energy balance, or levels of several circulating adipokines and tissue-resident inflammatory cells. These data indicate that ablation of this low-abundance subpopulation of adipocytes is associated with changes in circulating leptin levels and leptin-regulated endpoints associated with adipose tissue function. How they do so remains a mystery, but our results highlight the need for additional studies to explore the role of HSCDAs in other physiologic contexts such as obesity, metabolic dysfunction or loss of sex hormone production.


Assuntos
Insulina , Leptina , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Toxina Diftérica , Feminino , Células-Tronco Hematopoéticas , Insulina/metabolismo , Leptina/metabolismo , Camundongos
2.
Adipocyte ; 10(1): 394-407, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34404315

RESUMO

Some adipocytes are produced from bone marrow hematopoietic stem cells. In vitro studies previously indicated that these bone marrow-derived adipocytes (BMDAs) were generated from adipose tissue macrophage (ATM) that lose their hematopoietic markers and acquire mesenchymal markers prior to terminal adipogenic differentiation. Here we interrogated whether this hematopoietic-to-mesenchymal transition drives BMDA production In vitro. We generated transgenic mice in which the lysozyme gene promoter (LysM) indelibly labeled ATM with green fluorescent protein (GFP). We discovered that adipose stroma contained a population of LysM-positive myeloid cells that simultaneously expressed hematopoietic/myeloid markers (CD45 and CD11b), and mesenchymal markers (CD29, PDGFRa and Sca-1) typically found on conventional adipocyte progenitors. These cells were capable of adipogenic differentiation In vitro and In vitro, while other stromal populations deficient in PDGFRa and Sca-1 were non-adipogenic. BMDAs and conventional adipocytes expressed common fat cell markers but exhibited little or no expression of hematopoietic and mesenchymal progenitor cell markers. The data indicate that BMDAs are produced from ATM simultaneously expressing hematopoietic and mesenchymal markers rather than via a stepwise hematopoietic-to-mesenchymal transition. Because BMDA production is stimulated by high fat feeding, their production from hematopoietic progenitors may maintain adipocyte production when conventional adipocyte precursors are diminished.


Assuntos
Adipócitos , Células da Medula Óssea , Tecido Adiposo , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas , Camundongos
3.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L584-L594, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024304

RESUMO

MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression in many diseases, although the contribution of miRNAs to the pathophysiology of lung injury remains obscure. We hypothesized that dysregulation of miRNA expression drives the changes in key genes implicated in the development of lung injury. To test our hypothesis, we utilized a model of lung injury induced early after administration of intratracheal bleomycin (0.1 U). Wild-type mice were treated with bleomycin or PBS, and lungs were collected at 4 or 7 days. A profile of lung miRNA was determined by miRNA array and confirmed by quantitative PCR and flow cytometry. Lung miR-26a was significantly decreased 7 days after bleomycin injury, and, on the basis of enrichment of predicted gene targets, it was identified as a putative regulator of cell adhesion, including the gene targets EphA2, KDR, and ROCK1, important in altered barrier function. Lung EphA2 mRNA, and protein increased in the bleomycin-injured lung. We further explored the miR-26a/EphA2 axis in vitro using human lung microvascular endothelial cells (HMVEC-L). Cells were transfected with miR-26a mimic and inhibitor, and expression of gene targets and permeability was measured. miR-26a regulated expression of EphA2 but not KDR or ROCK1. Additionally, miR-26a inhibition increased HMVEC-L permeability, and the disrupted barrier integrity due to miR-26a was blocked by EphA2 knockdown, shown by VE-cadherin staining. Our data suggest that miR-26a is an important epigenetic regulator of EphA2 expression in the pulmonary endothelium. As such, miR-26a may represent a novel therapeutic target in lung injury by mitigating EphA2-mediated changes in permeability.


Assuntos
Endotélio Vascular/patologia , Lesão Pulmonar/patologia , MicroRNAs/genética , Receptor EphA2/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Permeabilidade da Membrana Celular , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor EphA2/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L871-L881, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345193

RESUMO

Pulmonary hypertension (PH) complicating bronchopulmonary dysplasia (BPD) worsens clinical outcomes in former preterm infants. Increased serotonin (5-hydroxytryptamine, 5-HT) signaling plays a prominent role in PH pathogenesis and progression in adults. We hypothesized that increased 5-HT signaling contributes to the pathogenesis of neonatal PH, complicating BPD and neonatal lung injury. Thus, we investigated 5-HT signaling in neonatal mice exposed to bleomycin, previously demonstrated to induce PH and alveolar simplification. Newborn wild-type mice received intraperitoneal PBS, ketanserin (1 mg/kg), bleomycin (3 U/kg) or bleomycin (3 U/kg) plus ketanserin (1 mg/kg) three times weekly for 3 wk. Following treatment with bleomycin, pulmonary expression of the rate-limiting enzyme of 5-HT synthesis, tryptophan hydroxylase-1 (Tph1), was significantly increased. Bleomycin did not affect pulmonary 5-HT 2A receptor (R) expression, but did increase pulmonary gene expression of the 5-HT 2BR and serotonin transporter. Treatment with ketanserin attenuated bleomycin-induced PH (increased RVSP and RVH) and pulmonary vascular remodeling (decreased vessel density and increased muscularization of small vessels). In addition, we found that treatment with ketanserin activated pulmonary MAPK and Akt signaling in mice exposed to bleomycin. We conclude that 5-HT signaling is increased in a murine model of neonatal PH and pharmacological inhibition of the 5-HT 2AR protects against the development of PH in neonatal lung injury. We speculate this occurs through restoration of MAPK signaling and increased Akt signaling.


Assuntos
Displasia Broncopulmonar/prevenção & controle , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/prevenção & controle , Substâncias Protetoras/farmacologia , Receptor 5-HT2A de Serotonina/química , Remodelação Vascular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Ketanserina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas da Serotonina/farmacologia
5.
Aerosp Med Hum Perform ; 87(12): 1031-1035, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323589

RESUMO

BACKGROUND: High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. METHODS: We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. RESULTS: We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. DISCUSSION: Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med Hum Perform. 2016; 87(12):1031-1035.


Assuntos
Doença da Altitude/prevenção & controle , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Edema Encefálico/prevenção & controle , Permeabilidade Capilar/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Artérias Cerebrais/efeitos dos fármacos , Veias Cerebrais/efeitos dos fármacos , Acetazolamida/farmacologia , Altitude , Animais , Desferroxamina/farmacologia , Indóis/farmacologia , Masculino , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Oligonucleotídeos , Ratos , Ratos Sprague-Dawley
6.
Free Radic Biol Med ; 82: 50-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656991

RESUMO

Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH.


Assuntos
Haptoglobinas/farmacologia , Hemoglobinas/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Animais , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Hipertrofia Ventricular Direita/patologia , Hipóxia , Molécula 1 de Adesão Intercelular/biossíntese , Ferro/metabolismo , Pneumopatias/patologia , Macrófagos Alveolares/patologia , Masculino , Oxirredução , Pneumonia/patologia , Ratos , Ratos Sprague-Dawley , Doenças Vasculares/patologia , Remodelação Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia
7.
Aviat Space Environ Med ; 85(11): 1125-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25329946

RESUMO

BACKGROUND: High altitude illnesses (HAI) are a risk factor for any individual who is exposed to a significant increase in altitude. To learn more about the epidemiology of HAI, we sought to determine if health records from a commercial trekking company could provide novel data on the prevalence of HAI, as well as efficacy data regarding common HAI therapeutics. METHODS: Health parameters from 917 tourists ascending Mt. Kilimanjaro over a 10-yr period were analyzed for meaningful data. RESULTS: Of all subjects, 70% experienced at least one instance of a symptom related to HAI (headache, nausea, vomiting, diarrhea, or loss of appetite) during the trek. Acetazolamide was used at least once by 90% of subjects and, of those who used acetazolamide, 92% began taking it on day 1 of the ascent. Acetazolamide was found to improve oxygen saturation 1.2% above 9842.5 ft (3000 m). Dexamethasone use 12 h prior to ascending above 18,996 ft (5790 m) decreased the probability of a subject exhibiting at least one AMS symptom at that altitude. DISCUSSION: The prevalence of AMS symptoms was not reduced by taking 2 extra days to reach the summit of Mt. Kilimanjaro. Prophylactic acetazolamide modestly improved oxygen saturation; however, it did not reduce symptoms. Therapeutic dexamethasone, especially at higher altitudes, was effective at reducing symptoms. We conclude that meaningful high altitude physiological data can be obtained from private trekking companies.


Assuntos
Doença da Altitude/epidemiologia , Acetazolamida/uso terapêutico , Doença da Altitude/prevenção & controle , Antieméticos/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Comércio , Coleta de Dados , Dexametasona/uso terapêutico , Feminino , Humanos , Modelos Lineares , Masculino , Montanhismo/fisiologia , Oxigênio/sangue , Estudos Retrospectivos , Tanzânia/epidemiologia , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA