Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochemistry ; 54(34): 5306-14, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26267475

RESUMO

The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. Recent live cell imaging studies have revealed that interactions of GR with chromatin are highly dynamic, with average receptor residence times of only seconds. These findings were surprising because early kinetic studies found that GR-DNA interactions in vitro were much slower, having calculated residence times of minutes to hours. However, these latter analyses were conducted at a time when it was possible to work with only either partially purified holoreceptor or its purified but isolated DNA binding domain. Noting these limitations, we reexamined GR-DNA dissociation kinetics using a highly purified holoreceptor shown to be amenable to rigorous study. We first observe that GR-DNA interactions in vitro are not slow as previously thought but converge with in vivo behavior, having residence times of only seconds to tens of seconds. This rapid exchange is seen at six individual response elements and the multisite MMTV promoter used in live cell imaging. Second, GR dissociation rates are identical for all response elements. Thus, previously observed differences in receptor affinity toward these sequences are not due to differences in off rate but in on rate. Finally, dissociation kinetics are biphasic in character. A minimal kinetic model consistent with the data is that in which DNA-bound GR interconverts between states on a second time scale, with dissociation occurring via a multistep process. We speculate that receptor interconversion in this time frame can be recognized by the coregulatory proteins that interact with GR, leading to unique transcriptional responses.


Assuntos
DNA/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Fenômenos Biofísicos , DNA/química , DNA/genética , Pegada de DNA , Humanos , Técnicas In Vitro , Cinética , Vírus do Tumor Mamário do Camundongo/genética , Regiões Promotoras Genéticas , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos de Resposta
2.
Nucleic Acids Res ; 42(2): 691-700, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24064251

RESUMO

Steroid receptors comprise an evolutionarily conserved family of transcription factors. Although the qualitative aspects by which individual receptors regulate transcription are well understood, a quantitative perspective is less clear. This is primarily because receptor function is considerably more complex than that of classical regulatory factors such as phage or bacterial repressors. Here we discuss recent advances in placing receptor-specific transcriptional regulation on a more quantitative footing, specifically focusing on the role of macromolecular interaction energetics. We first highlight limitations and challenges associated with traditional approaches for assessing the role of energetics (more specifically, binding affinity) with functional outcomes such as transcriptional activation. We next demonstrate how rigorous in vitro measurements and straightforward interaction models quantitatively relate energetics to transcriptional activity within the cell, and follow by discussing why such an approach is unexpectedly effective in explaining complex functional behavior. Finally, we examine the implications of these findings for considering the unique gene regulatory properties of the individual receptors.


Assuntos
Regulação da Expressão Gênica , Receptores de Esteroides/metabolismo , Elementos de Resposta , Transcrição Gênica , DNA/metabolismo , Ligação Proteica
3.
Biophys Chem ; 172: 8-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23333595

RESUMO

Steroid receptors assemble at DNA response elements as dimers, resulting in coactivator recruitment and transcriptional activation. Our work has focused on dissecting the energetics associated with these events and quantitatively correlating the results with function. A recent finding is that different receptors dimerize with large differences in energetics. For example, estrogen receptor-α (ER-α) dimerizes with a ΔG=-12.0 kcal/mol under conditions in which the glucocorticoid receptor (GR) dimerizes with a ΔG≤-5.1 kcal/mol. To determine the molecular forces responsible for such differences, we created a GR/ER chimera, replacing the hormone-binding domain (HBD) of GR with that of ER-α. Cellular and biophysical analyses demonstrate that the chimera is functionally active. However, GR/ER dimerization energetics are intermediate between the parent proteins and coupled to a strong ionic linkage. Since the ER-α HBD is the primary contributor to dimerization, we suggest that GR residues constrain an ion-regulated HBD assembly reaction.


Assuntos
Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Cloreto de Sódio/farmacologia , Sítios de Ligação , Pegada de DNA , Humanos , Luciferases/metabolismo , Multimerização Proteica , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Elementos de Resposta/genética , Ativação Transcricional
4.
J Mol Biol ; 422(1): 18-32, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22698871

RESUMO

The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. A long-standing question has focused on how GR and other receptors precisely control gene expression. One difficulty in addressing this is that GR function is influenced by multiple factors including ligand and coactivator levels, chromatin state, and allosteric coupling. Moreover, the receptor recognizes an array of DNA sequences that generate a range of transcriptional activities. Such complexity suggests that any single parameter-DNA binding affinity, for example-is unlikely to be a dominant contributor to function. Indeed, a number of studies have suggested that for GR and other receptors, binding affinity toward different DNA sequences is poorly correlated with transcriptional activity. As a step toward determining the factors most predictive of GR function, we rigorously examined the relationship between in vitro GR-DNA binding energetics and in vivo transcriptional activity. We first demonstrate that previous approaches for assessing affinity-function relationships are problematic due to issues of data transformation and linearization. Thus, the conclusion that binding energetics and transcriptional activity are poorly correlated is premature. Using more appropriate analyses, we find that energetics and activity are in fact highly correlated. Furthermore, this correlation can be quantitatively accounted for using simple binding models. Finally, we show that the strong relationship between energetics and transcriptional activity is recapitulated in multiple promoter contexts, cell lines, and chromatin environments. Thus, despite the complexity of GR function, DNA binding energetics are the primary determinant of sequence-specific transcriptional activity.


Assuntos
DNA/química , Receptores de Glucocorticoides/química , Transcrição Gênica , Sequência de Bases , Sítios de Ligação , Células Cultivadas , DNA/metabolismo , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/metabolismo , Termodinâmica , Ativação Transcricional , Transfecção
5.
Biochemistry ; 50(37): 7868-80, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21793594

RESUMO

The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.


Assuntos
Adenosina Trifosfatases/química , Reparo do DNA , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Multimerização Proteica , Adenosina Trifosfatases/metabolismo , Reparo do DNA/fisiologia , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas MutL , Fosfatos/química , Fosfatos/metabolismo , Ligação Proteica/genética , Multimerização Proteica/genética
6.
J Mol Biol ; 411(3): 633-48, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21704638

RESUMO

Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a "closed" state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an "open" state that differs by an ∼160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cristalização , Cristalografia por Raios X , DNA Helicases/genética , Reparo do DNA , DNA Bacteriano/genética , DNA de Cadeia Simples , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nucleotídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína
7.
EMBO J ; 29(22): 3826-39, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20877334

RESUMO

Escherichia coli UvrD is a 3'-5' superfamily 1A helicase/translocase involved in a variety of DNA metabolic processes. UvrD can function either as a helicase or only as an single-stranded DNA (ssDNA) translocase. The switch between these activities is controlled in vitro by the UvrD oligomeric state; a monomer has ssDNA translocase activity, whereas at least a dimer is needed for helicase activity. Although a 3'-ssDNA partial duplex provides a high-affinity site for a UvrD monomer, here we show that a monomer also binds with specificity to DNA junctions possessing a 5'-ssDNA flanking region and can initiate translocation from this site. Thus, a 5'-ss-duplex DNA junction can serve as a high-affinity loading site for the monomeric UvrD translocase, whereas a 3'-ss-duplex DNA junction inhibits both translocase and helicase activity of the UvrD monomer. Furthermore, the 2B subdomain of UvrD is important for this junction specificity. This highlights a separation of helicase and translocase function for UvrD and suggests that a monomeric UvrD translocase can be loaded at a 5'-ssDNA junction when translocation activity alone is needed.


Assuntos
DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Região 5'-Flanqueadora , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , DNA Helicases/química , DNA Helicases/genética , DNA Bacteriano/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
Mol Microbiol ; 61(1): 1-4, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16824089

RESUMO

Virion DNA molecules of large dsDNA viruses are highly condensed. To pack the DNA, an ATP hydrolysis-powered motor translocates the DNA into a preformed empty protein shell, the prohead. The icosahedral prohead has a special fivefold vertex, the portal vertex, where the translocation machinery acts. The portal vertex contains the portal protein, a gear-shaped dodecamer of radially disposed subunits with a central channel for DNA entry. The symmetry mismatch between the fivefold symmetry of the shell vertex and the 12-fold symmetry of the portal protein has prompted DNA packaging models in which ATP-driven portal protein rotation drives DNA translocation. In this issue of Molecular Microbiology, Baumann and colleagues test portal rotation models using bacteriophage T4. A fusion between the gp20 portal protein and the HOC external shell decoration protein is used to create a block to portal rotation. Finding that DNA packaging is unimpeded in proheads containing the fusion argues that portal rotation is not crucial to DNA translocation. The paper is a landmark for describing direct testing of the mechanism of DNA translocation.


Assuntos
Bacteriófago T4/fisiologia , Empacotamento do DNA/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Bacteriófago T4/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , Modelos Biológicos , Proteínas Virais/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia
9.
Biochemistry ; 44(42): 13673-82, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16229457

RESUMO

The first step in the formation of the nucleosome is commonly assumed to be the deposition of a histone H3-H4 heterotetramer onto DNA. Antisilencing function 1 (ASF1) is a major histone H3-H4 chaperone that deposits histones H3 and H4 onto DNA. With a goal of understanding the mechanism of deposition of histones H3 and H4 onto DNA, we have determined the stoichiometry of the Asf1-H3-H4 complex. We have established that a single molecule of Asf1 binds to an H3-H4 heterodimer using gel filtration, amino acid, reversed-phase chromatography, and analytical ultracentrifugation analyses. We demonstrate that Asf1 blocks formation of the H3-H4 heterotetramer by a mechanism that likely involves occlusion of the H3-H3 dimerization interface.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dimerização , Histonas/química , Chaperonas Moleculares , Peso Molecular , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ultracentrifugação
10.
Biochemistry ; 44(28): 9645-56, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16008350

RESUMO

Terminase enzymes are responsible for "packaging" of viral DNA into a preformed procapsid. Bacteriophage lambda terminase is composed of two subunits, gpA and gpNu1, in a gpA(1).gpNu1(2) holoenzyme complex. The larger gpA subunit is responsible for preparation of viral DNA for packaging, and is central to the packaging motor complex. The smaller gpNu1 subunit is required for site-specific assembly of the packaging motor on viral DNA. Terminase assembly at the packaging initiation site is regulated by ATP binding and hydrolysis at the gpNu1 subunit. Characterization of the catalytic and structural interactions between the DNA and nucleotide binding sites of gpNu1 is thus central to our understanding of the packaging motor at the molecular level. The high-resolution structure of the DNA binding domain of gpNu1 (gpNu1-DBD) was recently determined in our lab [de Beer, T., et al. (2002) Mol. Cell 9, 981-991]. The structure reveals the presence of a winged-helix-turn-helix DNA binding motif, but the location of the ATPase catalytic site in gpNu1 remains unknown. In this work, nucleotide binding to the gpNu1-DBD was probed using acrylamide fluorescence quenching and fluorescence-monitored ligand binding studies. The data indicate that the minimal DBD dimer binds both ATP and ADP at two equivalent but highly cooperative binding sites. The data further suggest that ATP and ADP induce distinct conformations of the dimer but do not affect DNA binding affinity. The implications of these results with respect to the assembly and function of a terminase DNA-packaging motor are discussed.


Assuntos
Bacteriófago lambda/enzimologia , Endodesoxirribonucleases/química , Proteínas Motores Moleculares/química , Subunidades Proteicas/química , Proteínas Virais/química , Montagem de Vírus/genética , Acrilamida/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Azidas/química , Azidas/metabolismo , Bacteriófago lambda/genética , Ligação Competitiva , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Genoma Viral , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Marcadores de Fotoafinidade/metabolismo , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Deleção de Sequência , Espectrometria de Fluorescência , Triptofano/química , Triptofano/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Mol Biol ; 347(3): 523-42, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15755448

RESUMO

Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.


Assuntos
Bacteriófago lambda/enzimologia , Empacotamento do DNA , Endodesoxirribonucleases/química , Holoenzimas/química , Proteínas Motores Moleculares/química , Adenosina Trifosfatases/metabolismo , Bacteriófago lambda/genética , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Holoenzimas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Genéticos , Proteínas Motores Moleculares/metabolismo , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
J Mol Biol ; 344(5): 1287-309, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15561144

RESUMO

Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. Using stopped-flow methods we have examined the kinetic mechanism of translocation of UvrD monomers along single-stranded DNA (ssDNA) in vitro by monitoring the transient kinetics of arrival of protein at the 5'-end of the ssDNA. Arrival at the 5'-end was monitored by the effect of protein on the fluorescence intensity of fluorophores (Cy3 or fluorescein) attached to the 5'-end of a series of oligodeoxythymidylates varying in length from 16 to 124 nt. We find that UvrD monomers are capable of ATP-dependent translocation along ssDNA with a biased 3' to 5' directionality. Global non-linear least-squares analysis of the full kinetic time-courses in the presence of a protein trap to prevent rebinding of free protein to the DNA using the methods described in the accompanying paper enabled us to obtain quantitative estimates of the kinetic parameters for translocation. We find that UvrD monomers translocate in discrete steps with an average kinetic step-size, m=3.68(+/-0.03) nt step(-1), a translocation rate constant, kt=51.3(+/-0.6) steps s(-1), (macroscopic translocation rate, mkt=189.0(+/-0.7) nt s(-1)), with a processivity corresponding to an average translocation distance of 2400(+/-600) nt before dissociation (10 mM Tris-HCl (pH 8.3), 20 mM NaCl, 20% (v/v) glycerol, 25 degrees C). However, in spite of its ability to translocate rapidly and efficiently along ssDNA, a UvrD monomer is unable to unwind even an 18 bp duplex in vitro. DNA helicase activity in vitro requires a UvrD dimer that unwinds DNA with a similar kinetic step-size of 4-5 bp step(-1), but an approximately threefold slower unwinding rate of 68(+/-9) bp s(-1) under the same solution conditions, indicating that DNA unwinding activity requires more than the ability to simply translocate directionally along ss-DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Movimento , Carbocianinas , Catálise , DNA de Cadeia Simples/química , Proteínas de Escherichia coli , Fluoresceína , Heparina/farmacologia , Cinética , Estrutura Molecular , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Fatores de Tempo
13.
Biophys J ; 85(4): 2224-39, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14507688

RESUMO

Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.


Assuntos
Algoritmos , DNA Helicases/química , DNA/química , Análise de Injeção de Fluxo/métodos , Modelos Químicos , Dinâmica não Linear , Espectrometria de Fluorescência/métodos , Simulação por Computador , Cinética , Análise dos Mínimos Quadrados , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Fatores de Tempo
14.
J Biol Chem ; 278(34): 31930-40, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12788954

RESUMO

Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Sequência de Bases , Primers do DNA , Dimerização , Proteínas de Escherichia coli , Cinética
15.
J Mol Biol ; 325(5): 889-912, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12527298

RESUMO

The Escherichia coli UvrD protein (helicase II) is an SF1 superfamily helicase required for methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized quantitatively the self-assembly equilibria of the UvrD protein as a function of [NaCl], [glycerol], and temperature (5-35 degrees C; pH 8.3) using analytical sedimentation velocity and equilibrium techniques, and find that UvrD self-associates into dimeric and tetrameric species over a range of solution conditions (t

Assuntos
Adenosina Trifosfatases/química , DNA Helicases/química , DNA Bacteriano/química , Escherichia coli/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/farmacologia , DNA Helicases/genética , DNA Helicases/isolamento & purificação , Primers do DNA , DNA de Cadeia Simples/química , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli , Glicerol/farmacologia , Magnésio/farmacologia , Matemática , Ligação Proteica , Cloreto de Sódio/farmacologia , Temperatura , Ultracentrifugação
16.
J Mol Biol ; 325(5): 913-35, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12527299

RESUMO

The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths /=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas do Capsídeo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/farmacologia , Ligação Competitiva , Capsídeo/fisiologia , DNA/metabolismo , DNA Helicases/química , DNA Helicases/deficiência , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA de Cadeia Simples/metabolismo , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli , Técnicas In Vitro , Cinética , Matemática , Ligação Proteica , Temperatura , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA