Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Genet ; 12: 716821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671382

RESUMO

Senescence is an important trait in maize (Zea mais L.), a key crop that provides nutrition values and a renewable source of bioenergy worldwide. Genome-wide association studies (GWAS) can be used to identify causative genetic variants that influence the major physiological measures of senescence, which is used by plants as a defense mechanism against abiotic and biotic stresses affecting its performance. We measured four physiological and two agronomic traits that affect senescence. Six hundred seventy-two recombinant inbred lines (RILs) were evaluated in two consecutive years. Thirty-six candidate genes were identified by genome-wide association study (GWAS), and 11 of them were supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport, and sink activity. We identified a candidate gene, Zm00001d043586, significantly associated with chlorophyll, and independently studied its transcription expression in an independent panel. Our results showed that Zm00001d043586 affects chlorophyl rate degradation, a key determinant of senescence, at late plant development stages. These results contribute to better understand the genetic relationship of the important trait senescence with physiology related parameters in maize and provide new putative molecular markers that can be used in marker assisted selection for line development.

2.
Plant Sci ; 307: 110882, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902850

RESUMO

Lodging is one of the causes of maize (Zea mays L.) production losses worldwide and, at least, the resistance to stalk lodging has been positively correlated with stalk strength. In order to elucidate the putative relationship between cell wall, stalk strength and lodging resistance, twelve maize inbreds varying in rind penetration strength and lodging resistance were characterized for cell wall composition and structure. Stepwise multiple regression indicates that H lignin subunits confer a greater rind penetration strength. Besides, the predictive model for lodging showed that a high ferulic acid content increases the resistance to lodging, whereas those of diferulates decrease it. These outcomes highlight that the strength and lodging susceptibility of maize stems may be conditioned by structural features of cell wall rather than by the net amount of cellulose, hemicelluloses and lignin. The results presented here provide biotechnological targets in breeding programs aimed at improving lodging in maize.


Assuntos
Parede Celular/química , Parede Celular/fisiologia , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Parede Celular/genética , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Resistência à Doença/genética , Resistência à Doença/fisiologia , Variação Genética , Genótipo , Fenótipo , Caules de Planta/genética
3.
Front Plant Sci ; 9: 522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740463

RESUMO

Plants defend themselves against herbivores by activating a plethora of genetic and biochemical mechanisms aimed at reducing plant damage and insect survival. The short-term plant response to insect attack is well understood, but less is known about the maintenance of this response over time. We performed transcriptomic and metabolomics analyses in order to identify genes and metabolites involved in the long-term response of maize to attack by the corn borer Sesamina nonagrioides. To determine the role of elicitors present in caterpillar secretions, we also evaluated the response of maize stem challenged with insect regurgitates. The integrative analysis of the omics results revealed that the long-term response in maize is characterized by repression of the primary metabolism and a strong redox response, mainly mediated by germin-like proteins to produce anti-nutritive and toxic compounds that reduce insect viability, and with the glutathione-ascorbate cycle being crucial to minimize the adverse effects of reactive oxygen species (ROS) on the plant. Our results suggest that different defense mechanisms are involved in the long-term response compared to those reported during the early response. We also observed a marginal effect of the caterpillar regurgitates on the long-term defensive response.

4.
J Agric Food Chem ; 65(42): 9180-9185, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28968115

RESUMO

The Mediterranean corn borer (MCB), Sesamia nonagrioides Lef, is an important pest of maize in temperate areas, causing significant stalk lodging and yield losses. The main goals of this study were to determine possible changes in chemical traits (phenols, flavonoids, anthocyanins, sugars, fibers, and lignin) during plant development after the flowering stage and to assess how those traits may differ in diverse genotypes of maize, such as MCB resistant and susceptible. Higher values for some particular traits in more mature tissues seemed to increase their effectiveness against the MCB attack. A decreased amount of borer damage in the field was recorded in the resistant inbred line and in older tissues (7.90 cm vs 31.70 cm as the mean for the stalk tunnel length). In accordance with these results, the resistant inbred line showed a higher degree of hemicellulose cross-linkage (due to ferulic and diferulic acids), higher soluble sugar content, and higher stalk strength. The use of resistant varieties and early sowings is highly recommended as an integrated approach to reduce the yield losses produced by this pest.


Assuntos
Mariposas/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Zea mays/química , Zea mays/crescimento & desenvolvimento , Animais , Antocianinas/análise , Antocianinas/metabolismo , Genótipo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/crescimento & desenvolvimento , Fenóis/análise , Fenóis/metabolismo , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/imunologia , Caules de Planta/parasitologia , Zea mays/imunologia , Zea mays/parasitologia
5.
Front Plant Sci ; 8: 573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469629

RESUMO

Despite the importance of heterosis and the efforts to comprehend this phenomenon, its molecular bases are still unknown. In this study, we intended to detect Quantitative trait loci (QTL) for mid-parent heterosis under infestation with the Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) using a North Carolina design III approach with a RIL population derived from a European flint inbred (EP42) × American dent inbred (A637) cross. QTL for heterosis of kernel yield have been positioned in regions corresponding to previously identified QTL for the same trait in different backgrounds. These results reinforce the high congruency of genes controlling heterosis across populations, even when populations have been developed from different heterotic patterns. A high percentage of genetic variation for mid-parent heterosis (Z2) for kernel yield could not be explained. Furthermore, genomic regions involved in heterosis for yield and plant height were not found despite the high genetic correlation between Z2 transformations for kernel yield and plant height. The moderate power in detecting QTL for mid-parent heterosis suggests that many genes with low augmented dominance effects contribute to the genetic architecture of mid-parent heterosis; dominance and additive-additive epistatic effects could also contribute to heterosis. However, results from this and previous studies suggest that the region 8.03-8.05 deserves special attention in future works in order to fine map loci involved in mid-parent heterosis for yield.

6.
Front Plant Sci ; 8: 698, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533785

RESUMO

Introduction: The Mediterranean corn borer (MCB), Sesamia nonagrioides, is a major pest of maize, Zea mays, in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 × A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB. 171 RILs were evaluated in 2014 and 2015 at Pontevedra, Spain, along with the two parental inbreds A637 and A509 using a 13 × 14 single lattice design with two replications. A genetic map with 285 SNP markers was used for QTL analysis. Our objectives were to detect QTL for resistance to MCB and tolerance-related agronomic traits, to gain insights on the genetic relationship between resistance to MCB attack and yield, and to establish the best way for simultaneously improving yield and resistance to MCB. Results: Twelve significant QTL were detected for agronomic and resistance traits. QTL at bins 1.10 and 5.04 were especially interesting because the same allelic variant at these QTL simultaneously improved yield and insect resistance. In contrast, in the region 8.04-8.05, QTL showed opposite effects for yield and resistance. Several QTL for indexes which combine yield and resistance traits were found especially in the region 10.02-10.03. Conclusions: Selecting genotypes with the favorable allele of QTL on chromosome 5 (bin 5.01) will decrease tunnel length without affect yield, silking and plant height and QTL on the region 5.04 could be used to improve stalk resistance and yield simultaneously. An allele of QTL on bin 9.07 will increase ear resistance to MCB attack but it could produce later varieties while favorable allele in region 1.10 could improve ear and stalk resistance and yield without secondary negative effects. The region 8.03-8.05 mainly but also the region 10.02-10.03 and 5.04 may play an important role to elucidate the association between yield, other agronomic traits and MCB resistance.

7.
BMC Plant Biol ; 17(1): 44, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202014

RESUMO

BACKGROUND: Plants can respond to insect attack via defense mechanisms that reduce insect performance. In this study, we examined the effects of several treatments applied to two maize genotypes (one resistant, one susceptible) on the subsequent growth and survival of Sesamia nonagrioides Lef. (Mediterranean corn borer, MCB) larvae. The treatments were infestation with MCB larvae, application of MCB regurgitant upon wounding, wounding alone, or exposure to methyl jasmonate, and they were applied at the V6-V8 stage of maize development. We also monitored changes in the concentrations of compounds known to be involved in constitutive resistance, such as cell wall-bound hydroxycinnamates and benzoxazinoids. RESULTS: In both maize genotypes, the leaves of plants pre-infested with MCB larvae were less suitable for larval development than those from untreated plants. Application of MCB regurgitant upon wounding, and wounding itself, resulted in leaf tissues becoming less suitable for larval growth than those of pre-infested plants, suggesting that there could be herbivore-associated effector molecules that suppress some wounding responses. A single application of MCB regurgitant did not seem to mimic feeding by MCB larvae, although the results suggested that regurgitant deposited during feeding may have enhanced ferulates and diferulates synthesis in infested vs. control plants. Jasmonic acid may play a role in mediating the maize response to MCB attack, but it did not trigger hydroxycinnamate accumulation in the leaves to a level comparable to that induced by larval leaf feeding. The EP39 maize genotype showed an increase in leaf cell wall strength by increasing hemicellulose cross-linking in response to MCB attack, while induced defenses in the EP42 plants appeared to reflect a broader array of resistance mechanisms. CONCLUSIONS: The results indicated that leaf feeding by MCB larvae can increase leaf antibiosis against MCB in two maize genotypes with contrasting levels of resistance against this borer. Also, the larval regurgitant played a positive role in eliciting a defense response. We determined the effects of the plant response on larval growth, and detected defense compounds related to borer resistance.


Assuntos
Herbivoria , Mariposas , Folhas de Planta/fisiologia , Zea mays/fisiologia , Animais , Benzofuranos/metabolismo , Benzoxazinas/metabolismo , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Genótipo , Larva , Mariposas/fisiologia , Zea mays/genética
8.
J Agric Food Chem ; 63(8): 2206-14, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25619118

RESUMO

There is strong evidence to suggest that cross-linking of cell-wall polymers through ester-linked diferulates has a key role in plant resistance to pests; however, direct experimentation to provide conclusive proof is lacking. This study presents an evaluation of the damage caused by two corn borer species on six maize populations particularly selected for divergent diferulate concentrations in pith stem tissues. Maize populations selected for high total diferulate concentration had 31% higher diferulates than those selected for low diferulates. Stem tunneling by corn borer species was 29% greater in the population with the lowest diferulates than in the population with the highest diferulates (31.7 versus 22.6 cm), whereas total diferulate concentration was negatively correlated with stem tunneling by corn borers. Moreover, orthogonal contrasts between groups of populations evaluated showed that larvae fed in laboratory bioassays on pith stem tissues from maize populations with higher diferulates had 30-40% lower weight than larvae fed on the same tissues from maize populations with lower diferulates. This is the first report that shows a direct relationship between diferulate deposition in maize cell walls and corn borer resistance. Current findings will help to develop adapted maize varieties with an acceptable level of resistance against borers and be useful in special kinds of agriculture, such as organic farming.


Assuntos
Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lepidópteros/fisiologia , Doenças das Plantas/prevenção & controle , Polissacarídeos/química , Zea mays/metabolismo , Animais , Parede Celular/química , Parede Celular/parasitologia , Ácidos Cumáricos/química , Esterificação , Doenças das Plantas/parasitologia , Polissacarídeos/metabolismo , Zea mays/química , Zea mays/parasitologia
9.
Genetics ; 197(1): 375-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532779

RESUMO

Association mapping has permitted the discovery of major QTL in many species. It can be applied to existing populations and, as a consequence, it is generally necessary to take into account structure and relatedness among individuals in the statistical model to control false positives. We analytically studied power in association studies by computing noncentrality parameter of the tests and its relationship with parameters characterizing diversity (genetic differentiation between groups and allele frequencies) and kinship between individuals. Investigation of three different maize diversity panels genotyped with the 50k SNPs array highlighted contrasted average power among panels and revealed gaps of power of classical mixed models in regions with high linkage disequilibrium (LD). These gaps could be related to the fact that markers are used for both testing association and estimating relatedness. We thus considered two alternative approaches to estimating the kinship matrix to recover power in regions of high LD. In the first one, we estimated the kinship with all the markers that are not located on the same chromosome than the tested SNP. In the second one, correlation between markers was taken into account to weight the contribution of each marker to the kinship. Simulations revealed that these two approaches were efficient to control false positives and were more powerful than classical models.


Assuntos
Mapeamento Cromossômico/métodos , Desequilíbrio de Ligação , Cromossomos de Plantas/genética , Genômica , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Zea mays/genética
10.
Int J Mol Sci ; 14(4): 6960-80, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23535334

RESUMO

In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among the same plant species, different tissues or even the same tissue at different developmental stages. Thus, it is important to highlight that the role of the cell wall components needs to be tested in diverse genotypes and specific tissues where the feeding or attacking by the pathogen takes place. Understanding the role of cell wall constituents as defense mechanisms may allow modifications of crops to withstand pests and diseases.


Assuntos
Parede Celular/química , Resistência à Doença/imunologia , Controle de Pragas , Doenças das Plantas/imunologia , Zea mays/imunologia , Polissacarídeos/metabolismo
11.
Phytochemistry ; 83: 43-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22938993

RESUMO

Cross-linking of grass cell wall components through diferulates (DFAs) has a marked impact on cell wall properties. However, results of genetic selection for DFA concentration have not been reported for any grass species. We report here the results of direct selection for ester-linked DFA concentration in maize stalk pith tissues and the associated changes in cell wall composition and biodegradability. After two cycles of divergent selection, maize populations selected for higher total DFA (DFAT) content (CHs) had 16% higher DFAT concentrations than populations selected for lower DFAT content (CLs). These significant DFA concentration gains suggest that DFA deposition in maize pith parenchyma cell walls is a highly heritable trait that is genetically regulated and can be modified trough conventional breeding. Maize populations selected for higher DFAT had 13% less glucose and 10% lower total cell wall concentration than CLs, suggesting that increased cross-linking of feruloylated arabinoxylans results in repacking of the matrix and possibly in thinner and firmer cell walls. Divergent selection affected esterified DFAT and monomeric ferulate ether cross link concentrations differently, supporting the hypothesis that the biosynthesis of these cell wall components are separately regulated. As expected, a more higher DFA ester cross-coupled arabinoxylan network had an effect on rumen cell wall degradability (CLs showed 12% higher 24-h total polysaccharide degradability than CHs). Interestingly, 8-8-coupled DFAs, previously associated with cell wall strength, were the best predictors of pith cell wall degradability (negative impact). Thus, further research on the involvement of these specific DFA regioisomers in limiting cell wall biodegradability is encouraged.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Ácidos Cumáricos/química , Reagentes de Ligações Cruzadas/química , Ésteres/química , Zea mays/química , Ácidos Cumáricos/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Ésteres/metabolismo , Zea mays/citologia , Zea mays/metabolismo
12.
Phytochemistry ; 72(4-5): 365-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21281952

RESUMO

European and Mediterranean corn borers are two of the most economically important insect pests of maize (Zea mays L.) in North America and southern Europe, respectively. Cell wall structure and composition were evaluated in pith and rind tissues of resistant and susceptible inbred lines as possible corn borer resistance traits. Composition of cell wall polysaccharides, lignin concentration and composition, and cell wall bound forms of hydroxycinnamic acids were measured. As expected, most of the cell wall components were found at higher concentrations in the rind than in the pith tissues, with the exception of galactose and total diferulate esters. Pith of resistant inbred lines had significantly higher concentrations of total cell wall material than susceptible inbred lines, indicating that the thickness of cell walls could be the initial barrier against corn borer larvae attack. Higher concentrations of cell wall xylose and 8-O-4-coupled diferulate were found in resistant inbreds. Stem tunneling by corn borers was negatively correlated with concentrations of total diferulates, 8-5-diferulate and p-coumarate esters. Higher total cell wall, xylose, and 8-coupled diferulates concentrations appear to be possible mechanisms of corn borer resistance.


Assuntos
Parede Celular/química , Ácidos Cumáricos/análise , Lepidópteros/efeitos dos fármacos , Lignina/análise , Controle Biológico de Vetores , Polissacarídeos/análise , Zea mays/química , Animais , Europa (Continente) , Larva/efeitos dos fármacos , Estrutura Molecular , América do Norte , Caules de Planta , Xilose/análise
13.
Int J Mol Sci ; 11(2): 691-703, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20386661

RESUMO

Phenolic esters have attracted considerable interest due to the potential they offer for peroxidase catalysed cross-linking of cell wall polysaccharides. Particularly, feruloyl residues undergo radical coupling reactions that result in cross-linking (intra-/intermolecular) between polysaccharides, between polysaccharides and lignin and, between polysaccharides and proteins. This review addresses for the first time different studies in which it is established that cross-linking by dehydrodiferulates contributes to maize's defences to pests and diseases. Dehydrodiferulate cross-links are involved in maize defence mechanisms against insects such as the European, Mediterranean, and tropical corn borers and, storage pest as the maize weevil. In addition, cross-links are also discussed to be involved in genetic resistance of maize to fungus diseases as Gibberella ear and stalk rot. Resistance against insects and fungus attending dehydrodiferulates could go hand in hand. Quantitative trait loci mapping for these cell wall components could be a useful tool for enhancing resistance to pest and diseases in future breeding programs.


Assuntos
Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Resistência à Doença/fisiologia , Zea mays/química , Animais , Parede Celular/química , Parede Celular/metabolismo , Ácidos Cumáricos/farmacologia , Gibberella/fisiologia , Insetos/fisiologia , Doenças das Plantas , Polissacarídeos/química , Zea mays/metabolismo
14.
BMC Genomics ; 11: 174, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20230603

RESUMO

BACKGROUND: Ostrinia nubilalis (ECB) and Sesamia nonagrioides (MCB) are two maize stem borers which cause important losses in temperate maize production, but QTL analyses for corn borer resistance were mostly restricted to ECB resistance and maize materials genetically related (mapping populations derived from B73). Therefore, the objective of this work was to identify and characterize QTLs for MCB resistance and agronomic traits in a RILs population derived from European flint inbreds. RESULTS: Three QTLs were detected for stalk tunnel length at bins 1.02, 3.05 and 8.05 which explained 7.5% of the RILs genotypic variance. The QTL at bin 3.05 was co-located to a QTL related to plant height and grain humidity and the QTL at bin 8.05 was located near a QTL related to yield. CONCLUSIONS: Our results, when compared with results from other authors, suggest the presence of genes involved in cell wall biosynthesis or fortification with effects on resistance to different corn borer species and digestibility for dairy cattle. Particularly, we proposed five candidate genes related to cell wall characteristics which could explain the QTL for stalk tunnelling in the region 3.05. However, the small proportion of genotypic variance explained by the QTLs suggest that there are also many other genes of small effect regulating MCB resistance and we conclude that MAS seems not promising for this trait. Two QTLs detected for stalk tunnelling overlap with QTLs for agronomic traits, indicating the presence of pleitropism or linkage between genes affecting resistance and agronomic traits.


Assuntos
Mapeamento Cromossômico , Mariposas , Locos de Características Quantitativas , Zea mays/genética , Animais , Produtos Agrícolas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Fenótipo , Análise de Sequência de DNA
15.
Theor Appl Genet ; 119(8): 1451-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756472

RESUMO

The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 x Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 x Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL.


Assuntos
Mariposas/fisiologia , Locos de Características Quantitativas , Zea mays/genética , Animais , Mapeamento Cromossômico , Comportamento Alimentar , Zea mays/fisiologia
16.
Genet Res (Camb) ; 90(5): 385-95, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19061529

RESUMO

There is limited experimental information about the genetic basis of micro-environmental variance (V(E)) (developmental stability) and environmental correlations. This study, by using a population of maize recombinant inbred lines (RIL) and simple sequence repeat (SSR) polymorphic markers, aims at the following: firstly, to quantify the genetic component of the V(E) or developmental stability for four traits in maize and the environmental correlation between these traits, and secondly, to identify quantitative trait loci (QTLs) that influence these quantities. We found that, when estimating variances and correlations and testing their homogeneity, estimates and tests are needed that are not highly dependent on normality assumptions. There was significant variation among the RILs in V(E) and in the environmental correlation for some of the traits, implying genetic heterogeneity in the V(E) and environmental correlations. The genetic coefficient of variation of the environmental variance (GCV(V(E))) was estimated to be 20%, which is lower than estimates obtained for other species. A few genomic regions involved in the stability of one trait or two traits were detected, and these did not have an important influence on the mean of the trait. One region that could be associated with the environmental correlations between traits was also detected.


Assuntos
Mapeamento Cromossômico , Variação Genética , Locos de Características Quantitativas/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Cromossomos de Plantas , Cruzamentos Genéticos , Meio Ambiente , Genes de Plantas , Genótipo , Fenótipo , Recombinação Genética
17.
J Agric Food Chem ; 56(17): 8017-22, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18656924

RESUMO

Recurrent selection has been reported as successful for improving maize resistance against corn borers. This study was conducted to determine if phenolics concentration in maize changes during recurrent selection to improve stalk resistance to the Mediterranean corn borer. Three cycles of selection [EPS12(S)C0, ESP12(S)C2, and EPS12(S)C3] from the maize synthetic population EPS12 and test crosses to inbred lines A639, B93, and EP42 were field grown and artificially infested with Mediterranean corn borer larvae, and the pith tissues were sampled for biochemical analyses. Two major simple phenolic acids [p-coumaric (p-CA) and trans-ferulic (E-FA) acids] were identified in free and cell-wall fractions, whereas four isomers of diferulic acid (DFA) (8-5'l, 5-5', 8-o-4', and 8-5' benzofuran form) were present in the cell-wall bound fraction. The selection cycles EPS12(S)C0 and EPS12(S)C3 showed less damage and higher cell wall phenolics concentrations than the cycle EPS12(S)C2. In addition, higher concentrations of total DFAs were associated with shorter tunnel length and lower numbers of larvae per stem. The current study shows new and concrete evidence that the cell-wall bound phenolics could have a determinative role in the resistance to the Mediterranean corn borer, although future development of recurrent and divergent selection cycles will clarify this point.


Assuntos
Mariposas , Fenóis/análise , Zea mays/química , Zea mays/genética , Animais , Parede Celular/metabolismo , Cruzamentos Genéticos , Endogamia , Fenóis/metabolismo , Doenças das Plantas , Seleção Genética
18.
J Agric Food Chem ; 55(13): 5186-93, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17547419

RESUMO

The relationship between phenolic compounds and maize pith resistance to Fusarium graminearum, the causal agent of Gibberella stalk rot, was investigated. The phenolic acid profiles in the stalks of six maize inbred lines of varying susceptibility were evaluated from silking to grain maturity. Four different fractions of phenolic compounds were extracted from inoculated and non-inoculated (control) pith tissues: insoluble cell-wall-bound, free, soluble ester-bound, and soluble glycoside-bound phenolics. Analysis by HPLC revealed that p-coumaric acid and ferulic acid were the most abundant compounds in the soluble and cell-wall-bound fractions. The quantity of free, glycoside-bound, and ester-bound phenolics in the pith was lower than the level required for the inhibition of Fusarium growth or mycotoxins production; however, significant negative correlations between diferulic acid contents in the cell walls and disease severity ratings 4 days after inoculation were found. The results indicated that future studies should focus on the levels of diferulic acids during the early infection process. Diferulates may play a role in genotypic resistance of maize to Gibberella stalk rot as preformed barriers to infection.


Assuntos
Fusarium , Fenóis/análise , Doenças das Plantas/genética , Zea mays/química , Zea mays/genética , Cromatografia Líquida de Alta Pressão , Genótipo , Doenças das Plantas/microbiologia , Especificidade da Espécie
19.
J Agric Food Chem ; 54(24): 9140-4, 2006 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17117802

RESUMO

The leaf sheaths of selected inbred lines of maize (Zea mays L.) with variable levels of stem resistance to the Mediterranean corn borer Sesamia nonagrioides (Lefèvbre) were evaluated for antibiotic effect on insect development. Phytochemical analyses of leaf sheaths were conducted for cell wall phenylpropanoid content to gain a better understanding of maize-resistance mechanisms. Laboratory bioassays established that sheath tissues from different genotypes significantly affected the growth of neonate larvae. Three hydroxycinnamates, p-coumaric, trans-ferulic, and cis-ferulic acids, and three isomers of diferulic acid, 8-5', 8-O-4', and 8-5' b (benzofuran form), were identified. Significant negative correlations were found between larvae weight and diferulic acid content for six genotypes. These results are in agreement with previous studies concerning the role of cell wall structural components in stem borer resistance.


Assuntos
Ácidos Cumáricos/análise , Lepidópteros , Fenilpropionatos/análise , Zea mays/química , Animais , Parede Celular/química , Ácidos Cumáricos/química , Larva , Controle Biológico de Vetores , Fenilpropionatos/química , Caules de Planta/química
20.
J Agric Food Chem ; 54(6): 2274-9, 2006 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-16536607

RESUMO

The stem borer Sesamia nonagrioides (Lefèbvre) is the most important insect pest that attacks maize, Zea mays L., in northwestern Spain. Host plant resistance to this borer was investigated in relation to the cell wall phenylpropanoids content in the pith. Eight inbred lines that differ in resistance were analyzed. Three major simple phenolic acids, p-coumaric, trans-ferulic, and cis-ferulic acids, and three isomers of diferulic acid, 8-5', 8-O-4', and 8-5'b (benzofuran form), were identified. The amount of all these compounds was correlated with the resistance level in the genotypes, with the resistant inbreds having the highest concentrations. The role of these compounds in cell wall fortification and lignification is well-documented, suggesting their possible intervention in S. nonagrioides resistance. Future studies that focus on these compounds could be useful to enhance S. nonagroides resistance.


Assuntos
Parede Celular/química , Parede Celular/fisiologia , Cinamatos/análise , Mariposas , Zea mays/ultraestrutura , Animais , Cinamatos/química , Ácidos Cumáricos/análise , Genótipo , Hidroxibenzoatos/análise , Controle de Insetos , Isomerismo , Propionatos , Sementes/química , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA