Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291092

RESUMO

The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbß3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.


Assuntos
Anemia Diseritropoética Congênita , Fator de Transcrição GATA1 , Doenças Genéticas Ligadas ao Cromossomo X , Variação Genética , Trombocitopenia , Dedos de Zinco , Humanos , Masculino , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Integrinas/metabolismo , Fenótipo , Trombocitopenia/genética , Dedos de Zinco/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Anemia Diseritropoética Congênita/genética , Plaquetas/patologia
2.
BMC Pediatr ; 22(1): 487, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965332

RESUMO

PURPOSE: Real-world data and study data regarding therapy with Emicizumab in pediatric cohorts with haemophilia A is scarce. Especially, data on previously untreated pediatric patients (PUPs) and minimally treated patients (MTPs) are missing. METHODS: Thirteen pediatric patients with haemophilia A and treatment with Emicizumab were retrospectively evaluated for Annual Bleeding Rates (ABR) pre-and post-Emicizumab treatment. Safety data and data on management of minor surgery as well as laboratory results were collected. Additionally, we describe the clinical features of two PUPs and one MTP that are included in our cohort. RESULTS: Median age at initiation of Emicizumab was 5.3 (range: 0.26-17.5) years, three patients were younger than one year at initiation of treatment with Emicizumab. Median follow-up time on Emicizumab was 23.8 (range: 0.7-40) months. Total ABR (p = 0.009) as well as spontaneous (p = 0.018), traumatic (p = 0.018), and joint (p = 0.027) ABR reduced significantly post-Emicizumab transition. Safety profile was favourable as only one local site reaction occurred; no cessation of treatment was necessary. Surgery was successfully performed in three patients receiving rFVlla pre- and post-surgery. Emicizumab trough levels showed a median of 43.2 µg/ml (range: 23.9-56.8) after three doses of 3 mg/kg and 51.9 µg/ml (range: 30.4-75) at first follow-up with 1.5 mg/kg. CONCLUSION: Emicizumab is safe and efficient in pediatric patients with and without inhibitors. More data on larger multicenter cohorts and especially on PUPs/MTPs are still needed.


Assuntos
Anticorpos Biespecíficos , Hemofilia A , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Criança , Hemofilia A/tratamento farmacológico , Humanos , Estudos Retrospectivos
4.
Blood Cancer Discov ; 2(5): 468-483, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34568832

RESUMO

Proteasome inhibitor bortezomib induces apoptosis in multiple myeloma (MM) cells, and has transformed patient outcome. Using in vitro as well as in vivo immunodeficient and immunocompetent murine MM models, we here show that bortezomib also triggers immunogenic cell death (ICD) characterized by exposure of calreticulin on dying MM cells, phagocytosis of tumor cells by dendritic cells, and induction of MM specific immunity. We identify a bortezomib-triggered specific ICD-gene signature associated with better outcome in two independent MM patient cohorts. Importantly, bortezomib stimulates MM cells immunogenicity via activation of cGAS/STING pathway and production of type-I interferons; and STING agonists significantly potentiate bortezomib-induced ICD. Our studies therefore delineate mechanisms whereby bortezomib exerts immunotherapeutic activity, and provide the framework for clinical trials of STING agonists with bortezomib to induce potent tumor-specific immunity and improve patient outcome in MM.


Assuntos
Mieloma Múltiplo , Animais , Bortezomib/farmacologia , Humanos , Imunidade , Proteínas de Membrana/genética , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Nucleotidiltransferases/genética , Transdução de Sinais
5.
Leukemia ; 35(12): 3509-3525, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34007044

RESUMO

Bone marrow (BM) angiogenesis significantly influences disease progression in multiple myeloma (MM) patients and correlates with adverse prognosis. The present study shows a statistically significant correlation of the AP-1 family member JunB with VEGF, VEGFB, and IGF1 expression levels in MM. In contrast to the angiogenic master regulator Hif-1α, JunB protein levels were independent of hypoxia. Results in tumor-cell models that allow the induction of JunB knockdown or JunB activation, respectively, corroborated the functional role of JunB in the production and secretion of these angiogenic factors (AFs). Consequently, conditioned media derived from MM cells after JunB knockdown or JunB activation either inhibited or stimulated in vitro angiogenesis. The impact of JunB on MM BM angiogenesis was finally confirmed in a dynamic 3D model of the BM microenvironment, a xenograft mouse model as well as in patient-derived BM sections. In summary, in continuation of our previous study (Fan et al., 2017), the present report reveals for the first time that JunB is not only a mediator of MM cell survival, proliferation, and drug resistance, but also a promoter of AF transcription and consequently of MM BM angiogenesis. Our results thereby underscore worldwide efforts to target AP-1 transcription factors such as JunB as a promising strategy in MM therapy.


Assuntos
Medula Óssea/irrigação sanguínea , Mieloma Múltiplo/irrigação sanguínea , Fatores de Transcrição/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Cultura Primária de Células , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo
6.
Cancers (Basel) ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019064

RESUMO

Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future.

7.
Breast Cancer Res Treat ; 173(3): 585-596, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30374681

RESUMO

PURPOSE: Recent studies have emphasized a key role for the anti-apoptotic Bcl-2 family member Mcl-1 in conferring tumor cell survival and drug resistance in breast cancer (BC). Mcl-1 inhibitors, such as the BH3-mimetic EU-5346, therefore represent an exciting new class of targeting agents and are a current focus of widespread cancer-drug development efforts. METHODS: ONCOMINE analysis was utilized to compare expression profiles of Bcl-2 family members across all major BC subgroups. Potential toxicities of EU-5346 were evaluated using iPS-generated cardiomyocytes, blood cells and astrocytes. The anti-BC cell activity of EU-5346-based therapies was evaluated using [3H]-thymidine uptake and spheroid-forming assays as well as immunoblotting and the Chou-Talalay method. Protein level-based activity of EU-5346, the specific anti-Bcl-2 inhibitor ABT-199 and the specific anti-Bcl-xL inhibitor WEHI-539 was verified in Mcl-1Δ/null versus Mcl-1wt/wt MEFs. RESULTS: We previously demonstrated significant anti-tumor activity of EU-5346 in all BC subtypes. Our present results go further and suggest that EU-5346 may induce limited adverse events such as cardiotoxicity, hematotoxicity, and neurotoxicity, frequently observed with other BH3 mimetics. As demonstrated by our mathematical scoring model, the prediction of EU-5643-induced IC50 not only relies on the protein level of Mcl-1 but also on Bak, Bim, and Noxa. Synergistic anti-BC activity of low-dose EU-5346 with the BH3 mimetics ABT-199 or WEHI-539 was observed only in those BC cells expressing Bcl-2 or Bcl-xL, respectively. Similarly, when combined with tamoxifen or trastuzumab, low-dose EU-5346 induced significant anti-BC activity in hormone receptor positive or Her2-positive BC cells, respectively. Finally, EU-5346 in combination with paclitaxel induced synergistic anti-BC activity in both paclitaxel-sensitive and paclitaxel-resistant TNBC cells. CONCLUSION: These data strongly support the further clinical development of EU-5346 to improve BC patient survival.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cardiotoxicidade , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
PLoS One ; 11(3): e0150507, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934743

RESUMO

INTRODUCTION: The occurrence of skeletal metastases in cancer, e.g. breast cancer (BC), deteriorates patient life expectancy and quality-of-life. Current treatment options against tumor-associated bone disease are limited to anti-resorptive therapies and aimed towards palliation. There remains a lack of therapeutic approaches, which reverse or even prevent the development of bone metastases. Recent studies demonstrate that not only osteoclasts (OCs), but also osteoblasts (OBs) play a central role in the pathogenesis of skeletal metastases, partly by producing hepatocyte growth factor (HGF), which promotes tumor cell migration and seeding into the bone. OBs consist of a heterogeneous cell pool with respect to their maturation stage and function. Recent studies highlight the critical role of pre-OBs in hematopoiesis. Whether the development of bone metastases can be attributed to a particular OB maturation stage is currently unknown. METHODS AND RESULTS: Pre-OBs were generated from healthy donor (HD)-derived bone marrow stromal cells (BMSC) as well as the BMSC line KM105 and defined as ALPlow OPNlow RUNX2high OSX high CD166high. Conditioned media (CM) of pre-OBs, but not of undifferentiated cells or mature OBs, enhanced migration of metastatic BC cells. Importantly, HGF mRNA was significantly up-regulated in pre-OBs versus mature OBs, and CM of pre-OBs activated the MET signaling pathway. Highlighting a key role for HGF, CM from HGF-negative pre-OBs derived from the BMSC line HS27A did not support migration of BC cells. Genetically (siMET) or pharmacologically (INCB28060) targeting MET inhibited both HGF- and pre-OB CM- mediated BC cell migration. CONCLUSIONS: Our data demonstrate for the first time a role for pre-OBs in mediating HGF/MET- dependent migration of BC cells and strongly support the clinical evaluation of INCB28060 and other MET inhibitors to limit and/or prevent BC-associated bone metastases.


Assuntos
Neoplasias da Mama/genética , Fator de Crescimento de Hepatócito/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Benzamidas/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imidazóis , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Triazinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA