Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Environ Manage ; 342: 118220, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290308

RESUMO

Landfills are commonly used to manage solid waste, but they can contribute to microplastic (MPs) pollution. As plastic waste degrades in landfills, MPs are released into the surrounding environment, contaminating soil, groundwater, and surface water. This poses a threat to human health and the environment, as MPs can adsorb toxic substances. This paper provides a comprehensive review of the degradation process of macroplastics into microplastics, the types of MPs found in landfill leachate (LL), and the potential toxicity of microplastic pollution. The study also evaluates various physical-chemical and biological treatment methods for removing MPs from wastewater. The concentration of MPs in young landfills is higher than in old landfills, and specific polymers such as polypropylene, polystyrene, nylon, and polycarbonate contribute significantly to microplastic contamination. Primary treatments such as chemical precipitation and electrocoagulation can remove up to 60-99% of total MPs from wastewater, while tertiary treatments such as sand filtration, ultrafiltration, and reverse osmosis can remove up to 90-99%. Advanced techniques, such as a combination of membrane bioreactor, ultrafiltration, and nanofiltration (MBR + UF + NF), can achieve even higher removal rates. Overall, this paper highlights the importance of continuous monitoring of microplastic pollution and the need for effective microplastic removal from LL to protect human and environmental health. However, more research is needed to determine the actual cost and feasibility of these treatment processes at a larger scale.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Águas Residuárias , Poluentes Químicos da Água/química , Resíduos Sólidos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37010689

RESUMO

Rising need for various renewable and non-renewable energy resources became vital for developing countries to meet their rapid economic growth under an exponentially growing population scenario. The primary goal of COP-26 for climate change mitigation is to reduce greenhouse gas (GHG) emissions from different sectors. Because of their significant contribution to global warming, GHG emissions from hydroelectric reservoirs have been a contentious topic of discussion since the pre-industrial age. However, the exact methodology for quantification of GHG and important parameters affecting emission rate is difficult due to limited equipment facilities, techniques for GHG measurement, uncertainties in GHG emissions rate, insufficient GHG database, and significant spatio-temporal variability of emission in the global reservoirs. This paper discusses the current scenario of GHG emissions from renewable energy, with a focus on hydroelectric reservoirs, methodological know-how, the interrelationship between parameters impacting GHG emissions, and mitigation techniques. Aside from that, significant methods and approaches for predicting GHG emissions from hydroelectric reservoirs, accounting for GHG emissions, life cycle assessment, uncertainty sources, and knowledge gaps, have been thoroughly discussed.

4.
Environ Res ; 225: 115605, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871947

RESUMO

The role of pesticides in enhancing global agricultural production is magnificent. However, their unmanaged use threatens water resources and individual health. A significant pesticide concentration leaches to groundwater or reaches surface waters through runoff. Water contaminated with pesticides may cause acute or chronic toxicity to impacted populations and exert adverse environmental effects. It necessitates the monitoring and removing pesticides from water resources as prime global concerns. This work reviewed the global occurrences of pesticides in potable water and discussed the conventional and advanced technologies for the removal of pesticides. The concentration of pesticides highly varies in freshwater resources across the globe. The highest concentration of α-HCH (6.538 µg/L, at Yucatan, Mexico), lindane (6.08 µg/L at Chilka lake, Odisha, India), 2,4, DDT (0.90 µg/L, at Akkar, Lebanon), chlorpyrifos (9.1 µg/L, at Kota, Rajasthan, India), malathion (5.3 µg/L, at Kota, Rajasthan, India), atrazine (28.0 µg/L, at Venado Tuerto City, Argentina), endosulfan (0.78 µg/L, at Yavtmal, Maharashtra, India), parathion (4.17 µg/L, at Akkar, Lebanon), endrin (3.48 µg/L, at KwaZuln-Natl Province, South Africa) and imidacloprid (1.53 µg/L, at Son-La province, Vietnam) are reported. Pesticides can be significantly removed through physical, chemical, and biological treatment. Mycoremediation technology has the potential for up to 90% pesticide removal from water resources. Complete removal of the pesticides through a single biological treatment approach such as mycoremediation, phytoremediation, bioremediation, and microbial fuel cells is still a challenging task, however, the integration of two or more biological treatment approaches can attain complete removal of pesticides from water resources. Physical methods along with oxidation methods can be employed for complete removal of pesticides from drinking water.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Índia , Água Doce , Água Potável/análise
5.
Chemosphere ; 284: 131325, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34216922

RESUMO

Industrialization and modernization of agricultural systems contaminated lithosphere, hydrosphere, and biosphere of the Earth. Sustainable remediation of contamination is essential for environmental sustainability. Myco-remediation is proposed to be a green, economical, and efficient technology over conventional remediation technologies to combat escalating pollution problems at a global scale. Fungi can perform remediation of pollutants through several mechanisms like biosorption, precipitation, biotransformation, and sequestration. Myco-remediation significantly removes or degrades metal metals, persistent organic pollutants, and other emerging pollutants. The current review highlights the species-specific remediation potential, influencing factors, genetic and molecular control mechanism, applicability merits to enhance the bioremediation efficiency. Structure and composition of fungal cell wall is crucial for immobilization of toxic pollutants and a subtle change on fungal cell wall structure may significantly affect the immobilization efficiency. The utilization protocol and applicability of enzyme engineering and myco-nanotechnology to enhance the bioremediation efficiency of any potential fungus was proposed. It is advocated that the association of hyper-accumulator plants with plant growth-promoting fungi could help in an effective cleanup strategy for the alleviation of persistent soil pollutants. The functions, activity, and regulation of fungal enzymes in myco-remediation practices required further research to enhance the myco-remediation potential. Study of the biotransformation mechanisms and risk assessment of the products formed are required to minimize environmental pollution. Recent advancements in molecular "Omic techniques"and biotechnological tools can further upgrade myco-remediation efficiency in polluted soils and water.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Fungos , Plantas , Solo , Poluentes do Solo/análise
6.
Water Environ Res ; 93(10): 1882-1909, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34129692

RESUMO

Constructed wetland systems (CWs) are biologically and physically engineered systems to mimic the natural wetlands which can potentially treat the wastewater from the various point and nonpoint sources of pollution. The present study aims to review the various mechanisms involved in the different types of CWs for wastewater treatment and to elucidate their role in the effective functioning of the CWs. Several physical, chemical, and biological processes substantially influence the pollutant removal efficiency of CWs. Plants species Phragmites australis, Typha latifolia, and Typha angustifolia are most widely used in CWs. The rate of nitrogen (N) removal is significantly affected by emergent vegetation cover and type of CWs. Hybrid CWs (HCWS) removal efficiency for nutrients, metals, pesticides, and other pollutants is higher than a single constructed wetland. The contaminant removal efficiency of the vertical subsurface flow constructed wetlands (VSSFCW) commonly used for the treatment of domestic and municipal wastewater ranges between 31% and 99%. Biochar/zeolite addition as substrate material further enhances the wastewater treatment of CWs. Innovative components (substrate materials, plant species) and factors (design parameters, climatic conditions) sustaining the long-term sink of the pollutants, such as nutrients and heavy metals in the CWs should be further investigated in the future. PRACTITIONER POINTS: Constructed wetland systems (CWs) are efficient natural treatment system for on-site contaminants removal from wastewater. Denitrification, nitrification, microbial and plant uptake, sedimentation and adsorption are crucial pollutant removal mechanisms. Phragmites australis, Typha latifolia, and Typha angustifolia are widely used emergent plants in constructed wetlands. Hydraulic retention time (HRT), water flow regimes, substrate, plant, and microbial biomass substantially affect CWs treatment performance.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
7.
Environ Sci Pollut Res Int ; 28(37): 51425-51439, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33987722

RESUMO

Irrigated transplanted flooded rice is a major source of methane (CH4) emission. We carried out experiments for 2 years in irrigated flooded rice to study if interventions like methane-utilizing bacteria, Blue-green algae (BGA), and Azolla could mitigate the emission of CH4 and nitrous oxide (N2O) and lower the yield-scaled global warming potential (GWP). The experiment included nine treatments: T1 (120 kg N ha-1 urea), T2 (90 kg N ha-1 urea + 30 kg N ha-1 fresh Azolla), T3 (90 kg N ha-1 urea + 30 kg N ha-1 Blue-green algae (BGA), T4 (60 kg N ha-1 urea + 30 kg N ha-1 BGA + 30 kg N ha-1 Azolla, T5 (120 kg N ha-1 urea + Hyphomicrobium facile MaAL69), T6 (120 kg N ha-1 by urea + Burkholderia vietnamiensis AAAr40), T7 (120 kg N ha-1 by urea + Methylobacteruim oryzae MNL7), T8 (120 kg N ha-1 urea + combination of Burkholderia AAAr40, Hyphomicrobium facile MaAL69, Methylobacteruim oryzae MNL7), and T9 (no N fertilizer). Maximum decrease in cumulative CH4 emission was observed with the application of Methylobacteruim oryzae MNL7 in T7 (19.9%), followed by Azolla + BGA in T4 (13.2%) as compared to T1 control. N2O emissions were not significantly affected by the application of CH4-oxidizing bacteria. However, significantly lower (P<0.01) cumulative N2O emissions was observed in T4 (40.7%) among the fertilized treatments. Highest yields were observed in Azolla treatment T2 with 25% less urea N application. The reduction in yield-scaled GWP was at par in T4 (Azolla and BGA) and T7 (Methylobacteruim oryzae MNL7) treatments and reduced by 27.4% and 15.2% in T4 and T7, respectively, as compared to the T1 (control). K-means clustering analysis showed that the application of Methylobacteruim oryzae MNL7, Azolla, and Azolla + BGA can be an effective mitigation option to reduce the global warming potential while increasing the yield.


Assuntos
Cianobactérias , Gases de Efeito Estufa , Hyphomicrobium , Oryza , Agricultura , Burkholderia , Fertilizantes/análise , Aquecimento Global , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo
8.
Chemosphere ; 275: 129996, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33647680

RESUMO

Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 µg g-1 in plants and 75-150 µg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical (<20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.


Assuntos
Níquel , Poluentes do Solo , Biodegradação Ambiental , Biota , Humanos , Níquel/análise , Níquel/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Chemosphere ; 275: 129856, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33636519

RESUMO

With the increase in the world's population, demand for food and other products is continuously rising. This has put a lot of pressure on the agricultural sector. To fulfill these demands, the utilization of chemical fertilizers and pesticides has also increased. Consequently, to overcome the adverse effects of agrochemicals on our environment and health, there has been a shift towards organic fertilizers or other substitutes, which are ecofriendly and help to maintain a sustainable environment. Microalgae have a very high potential of carbon dioxide (CO2) capturing and thus, help in mitigating the greenhouse effect. It is the most productive biological system for generating biomass. The high growth rate and higher photosynthetic efficiency of the algal species compared to the terrestrial plants make them a wonderful alternative towards a sustainable environment. Moreover, they could be cultivated in photobioreactors or open ponds, which in turn reduce the demand for arable land. Biochar derived from algae is high in nutrients and exhibits the property of ion exchange. Therefore, it can be utilized for sustainable agriculture by partial substituting the chemical fertilizers that degrade the fertility of the soil in the long run. This review provides a detailed insight on the properties of algal biochar as a potential fertilizer for sustainable agriculture. Application of algal biochar in bio-refinery and its economic aspects, challenges faced and future perspective are also discusses in this study.


Assuntos
Gases de Efeito Estufa , Agricultura , Dióxido de Carbono/análise , Sequestro de Carbono , Carvão Vegetal , Fertilizantes , Solo
10.
J Hazard Mater ; 409: 124496, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33187797

RESUMO

Phthalates are a group of emerging xenobiotic compounds commonly used as plasticizers. In recent times, there has been an increasing concern over the risk of phthalate exposure leading to adverse effects to human health and the environment. Therefore, it is necessary to not only understand the current status of phthalate pollution, their sources, exposure routes and health impacts, but also identify remediation technologies for mitigating phthalate pollution. Present review article aims to inform its readers about the ever increasing data on health burdens posed by phthalates and simultaneously highlights the recent advancements in research to alleviate phthalate contamination from environment. The article enumerates the major phthalates in use today, traces their environmental fate, addresses their growing health hazard concerns and largely focus on to provide an in-depth understanding of the different physical, chemical and biological treatment methods currently being used or under research for alleviating the risk of phthalate pollution, their challenges and the future research perspectives.

11.
Chemosphere ; 268: 128855, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33199107

RESUMO

Cadmium (Cd) is a harmful heavy metal that can cause potent environmental and health hazards at different trophic levels through food chain. Cd is relatively non-biodegradable and persists for a long time in the environment. Considering the potential toxicity and non-biodegradability of Cd in the environment as well as its health hazards, this is an urgent issue of international concern that needs to be addressed by implicating suitable remedial approaches. The current article specifically attempts to review the different biological approaches for remediation of Cd contamination in natural resources. Further, bioremediation mechanisms of Cd by microbes such as bacteria, fungi, algae are comprehensively discussed. Studies indicate that heavy metal resistant microbes can be used as suitable biosorbents for the removal of Cd (up to 90%) in the natural resources. Soil-to-plant transfer coefficient (TC) of Cd ranges from 3.9 to 3340 depending on the availability of metal to plants and also on the type of plant species. The potential phytoremediation strategies for Cd removal and the key factors influencing bioremediation process are also emphasized. Studies on molecular mechanisms of transgenic plants for Cd bioremediation show immense potential for enhancing Cd phytoremediation efficiency. Thus, it is suggested that nano-technological based integrated bioremediation approaches could be a potential futuristic path for Cd decontamination in natural resources. This review would be highly useful for the biologists, chemists, biotechnologists and environmentalists to understand the long-term impacts of Cd on ecology and human health so that potential remedial measures could be taken in advance.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Recursos Naturais , Solo , Poluentes do Solo/análise
12.
Bioresour Technol ; 305: 123063, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32135352

RESUMO

Algae have been considered as a best feedstock for combating CO2. In the present study, two mixed microalgal cultures i.e. MAC1 and MAC2 were evaluated in batch mode with an extraneous supply of CO2 from the fermentation of wheat straw. Both the mixed cultures displayed promising CO2 sequestration potentials of 287 and 263 mg L-1d-1, respectively. The removal efficiencies in terms of ammonium, phosphate, chemical oxygen demand, and nitrate were found to be 87%, 78%, 68% and 65%, respectively. Enriching the tolerance of the microalgal consortia to CO2 supply and wastewater as the nutrient source significantly enhanced the lipid production for both the microalgae consortia. Lipid contents of MAC1 and MAC2 were observed to be 12.29 & 11.37%, respectively while the biomass yield from both the consortia was 0.36 g L-1. Total chlorophyll and protein contents of MAC1 and MAC2 were 14.27 & 12.28 µgmL-1 and 0.13 & 0.15 mgmL-1, respectively. Both the consortia found to have significant potential for CO2 sequestration, wastewater remediation and biofuel production.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32218253

RESUMO

Lead (Pb) toxicity has been a subject of interest for environmental scientists due to its toxic effect on plants, animals, and humans. An increase in several Pb related industrial activities and use of Pb containing products such as agrochemicals, oil and paint, mining, etc. can lead to Pb contamination in the environment and thereby, can enter the food chain. Being one of the most toxic heavy metals, Pb ingestion via the food chain has proven to be a potential health hazard for plants and humans. The current review aims to summarize the research updates on Pb toxicity and its effects on plants, soil, and human health. Relevant literature from the past 20 years encompassing comprehensive details on Pb toxicity has been considered with key issues such as i) Pb bioavailability in soil, ii) Pb biomagnification, and iii) Pb- remediation, which has been addressed in detail through physical, chemical, and biological lenses. In the review, among different Pb-remediation approaches, we have highlighted certain advanced approaches such as microbial assisted phytoremediation which could possibly minimize the Pb load from the resources in a sustainable manner and would be a viable option to ensure a safe food production system.


Assuntos
Cadeia Alimentar , Abastecimento de Alimentos , Chumbo , Metais Pesados , Poluentes do Solo , Animais , Biodegradação Ambiental , Recuperação e Remediação Ambiental , Humanos , Chumbo/toxicidade , Solo , Poluentes do Solo/toxicidade
14.
Bioresour Technol ; 306: 123110, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32172090

RESUMO

Clostridium, Tetrathiobacter and Desulfovibrio species are identified as suitable biocatalysts for treating organic-rich and sulfate-laden wastewater. Results from this study show that the power generation was much higher under alkaline conditions, i.e., pH of 8 when compared to neutral and acidic conditions. The effect of salinity was studied by varying the sodium chloride concentration at (1.5, 3, 4.5, 6, and 7.5 g/L NaCl) in anolyte. The highest power density of 1188 mW/m3 was produced at a sodium chloride concentration of 6 g/L in the anolyte. Results from cyclic voltammetry and linear scan voltammetry analysis suggested the direct electron transfer mechanism favored by cytb and cytc, Redox peaks observed for the biogenic synthesis of sulfite and sulfide support the complete one-step mineralization of sulfate. Bioelectrochemical behavior of the selectively enriched microbial consortium confirms its use for the treatment of wastewaters high in salinity and sulfate concentrations.

15.
Chemosphere ; 241: 124824, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31590026

RESUMO

Waste management and global warming are the two challenging issues of the present global scenario. Increased human population has set the platform for rapid industrialization and modern agriculture. The industries such as energy, steel, and fertilizers play a significant role in improving the social, and economic status of human beings. The industrial production of energy (that involves combustion of coal), production of steel items and diammonium ammonium fertilizer generate a huge amount of wastes such as fly ash (FA), steel slag (SS) and phosphogypsum (PG), respectively. Inappropriate dumping of any kind of waste poses a threat to the environment, therefore, scientific management of waste is required to reduce associated environmental risks. These wastes i.e. SS, FA, and PG being rich sources of oxides of calcium (CaO), silicon (SiO2), iron (FeO), and aluminum (Al2O3), etc. may affect the release of greenhouse gases from the soil. The information associated with the application of FA, SS, and PG onto the paddy fields and their impacts on methane and nitrous oxide emissions are highly fragmented and scarce. The present review extensively and critically explores the available information with respect to the effective utilization of FA, SS, and PG in paddy cultivation, their potential to mitigate greenhouse gases emission and their associated mechanisms. The fine grid assessment of these waste management provides new insight into the next level research and future policy options for industries and farmers.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gases de Efeito Estufa/química , Resíduos Industriais , Oryza , Gerenciamento de Resíduos/métodos , Sulfato de Cálcio/química , Cinza de Carvão/química , Fertilizantes , Fósforo/química , Aço/química
16.
Chemosphere ; 242: 125080, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31675581

RESUMO

Lignocellulosic ethanol has been proposed as a green alternative to fossil fuels for many decades. However, commercialization of lignocellulosic ethanol faces major hurdles including pretreatment, efficient sugar release and fermentation. Several processes were developed to overcome these challenges e.g. simultaneous saccharification and fermentation (SSF). This review highlights the various ethanol production processes with their advantages and shortcomings. Recent technologies such as singlepot biorefineries, combined bioprocessing, and bioenergy systems with carbon capture are promising. However, these technologies have a lower technology readiness level (TRL), implying that additional efforts are necessary before being evaluated for commercial availability. Solving energy needs is not only a technological solution and interlinkage of various factors needs to be assessed beyond technology development.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Etanol/síntese química , Lignina/química , Biomassa , Carboidratos/química , Fermentação
17.
J Photochem Photobiol B ; 202: 111638, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733613

RESUMO

The present study investigates the phycoremediation potentials of two microalgal consortia (MAC1 and MAC2) for treating sewage water and producing biomass with high lipid, protein and chlorophyll contents. During the study, the microalgal strains were tested for lipid enhancement, biomass production and contaminant removal from wastewater. The microalgal consortia showed prolific growth in wastewater with 75% dilution and accumulated higher lipid content of 31.33% dry cell weight in MAC1. The maximum biomass (50% diluted wastewater) for both the consortia was 1.53 and 1.04 gL-1. Total chlorophyll (19.17-25.17 µg mL-1) and protein contents (0.12-0.16 mg mL-1) for both the consortia were found to be maximum in 75 WW. MAC1 was capable of removing 86.27% of total organic carbon and 87.6% of chemical oxygen demand. Approximately, 94% of nitrate and phosphate contents were removed from the initial contents of wastewater. Heavy metal removal efficiency was also found to be better and showed 85.06% Cu, 75.2% Cr, 98.2% Pb, and 99.6% Cd removal by the algal consortia. Pyrolytic decomposition of algal consortia was observed using thermogravimetric analysis. The stepwise decomposition of algae indicated distinct losses of functional groups. The gas chromatography-mass spectrometric analysis revealed the majority of saturated fatty acids followed by monounsaturated and polyunsaturated fatty acids. Thus, the present study proved that both the consortia show tremendous potential for the treatment of domestic wastewaters with successive lipid enhancement for biodiesel production.


Assuntos
Biocombustíveis/análise , Ácidos Graxos/metabolismo , Microalgas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Proteínas de Algas/metabolismo , Biomassa , Clorofila/análise , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Metais Pesados/química , Metais Pesados/metabolismo , Microalgas/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-31566482

RESUMO

A comprehensive review of available bioremediation technologies for the pesticide malathion is presented. This review article describes the usage and consequences of malathion in the environment, along with a critical discussion on modes of metabolism of malathion as a sole source of carbon, phosphorus, and sulfur for bacteria, and fungi along with the biochemical and molecular aspects involved in its biodegradation. Additionally, the recent approaches of genetic engineering are discussed for the manipulation of important enzymes and microorganisms for enhanced malathion degradation along with the challenges that lie ahead.


Assuntos
Biodegradação Ambiental , Inseticidas/metabolismo , Malation/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
19.
Environ Sci Pollut Res Int ; 24(19): 16019-16030, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28537018

RESUMO

Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m3 and volumetric current density was 16.17 A/m3. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.


Assuntos
Aeromonas , Fontes de Energia Bioelétrica , Clostridium , Desulfovibrio , Eletrodos , Filogenia
20.
Sci Total Environ ; 572: 874-896, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27575427

RESUMO

Methane is one of the critical greenhouse gases, which absorb long wavelength radiation, affects the chemistry of atmosphere and contributes to global climate change. Rice ecosystem is one of the major anthropogenic sources of methane. The anaerobic waterlogged soil in rice field provides an ideal environment to methanogens for methanogenesis. However, the rate of methanogenesis differs according to rice cultivation regions due to a number of biological, environmental and physical factors like carbon sources, pH, Eh, temperature etc. The interplay between the different conditions and factors may also convert the rice fields into sink from source temporarily. Mechanistic understanding and comprehensive evaluation of these variations and responsible factors are urgently required for designing new mitigation options and evaluation of reported option in different climatic conditions. The objective of this review paper is to develop conclusive understanding on the methane production, oxidation, and emission and methane measurement techniques from rice field along with its mitigation/abatement mechanism to explore the possible reduction techniques from rice ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA