Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8026): 841-849, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143207

RESUMO

Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization1. However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning and how they relate to behaviour2,3. Here we characterized the representational geometry of populations of neurons (single units) recorded in the hippocampus, amygdala, medial frontal cortex and ventral temporal cortex of neurosurgical patients performing an inferential reasoning task. We found that only the neural representations formed in the hippocampus simultaneously encode several task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consists of disentangled directly observable and discovered latent task variables. Learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behaviour suggests that abstract and disentangled representational geometries are important for complex cognition.


Assuntos
Hipocampo , Neurônios , Humanos , Hipocampo/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Masculino , Feminino , Aprendizagem/fisiologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/citologia , Cognição/fisiologia , Adulto , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Modelos Neurológicos , Pessoa de Meia-Idade
2.
Pituitary ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102126

RESUMO

Pituitary apoplexy (PA) is a clinical syndrome caused by acute hemorrhage and/or infarction of the pituitary gland, most commonly in the setting of a pituitary macroadenoma. PA generally presents with severe headache, nausea, vomiting, visual disturbance, and, in more severe cases, altered mental status. Many factors have been attributed to the risk of developing PA, including most recently, numerous reports showcasing an association with COVID-19 infection or vaccination. Initial management of PA includes evaluation and correction of deficient hormones and electrolytes and an assessment if surgical decompression to relieve pressure on optic nerves and other brain structures is needed. While prompt recognition and treatment are crucial to avoid morbidity and mortality, in the modern era, PA is less commonly considered a true neurosurgical emergency requiring immediate (< 24 h) surgical decompression. Traditionally, surgical decompression has been the standard of care for significant mass effects. However, several studies have shown similar outcomes in visual and hormonal recovery with either surgical decompression or conservative medical management. Unfortunately, most evidence on optimal management strategies is limited to retrospective case series, small prospective studies, and one multi-center observational study. This review aims to provide the most up-to-date evidence on the role of COVID-19 in PA and best management strategies.

3.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071325

RESUMO

Working Memory (WM) and Long-Term Memory (LTM) are often viewed as separate cognitive systems. Little is known about how these systems interact when forming memories. We recorded single neurons in the human medial temporal lobe while patients maintained novel items in WM and a subsequent recognition memory test for the same items. In the hippocampus but not the amygdala, the level of WM content-selective persist activity during WM maintenance was predictive of whether the item was later recognized with high confidence or forgotten. In contrast, visually evoked activity in the same cells was not predictive of LTM formation. During LTM retrieval, memory-selective neurons responded more strongly to familiar stimuli for which persistent activity was high while they were maintained in WM. Our study suggests that hippocampal persistent activity of the same cell supports both WM maintenance and LTM encoding, thereby revealing a common single-neuron component of these two memory systems.

4.
bioRxiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39071326

RESUMO

The ability to pursue long-term goals relies on a representations of task context that can both be maintained over long periods of time and switched flexibly when goals change. Little is known about the neural substrate for such minute-scale maintenance of task sets. Utilizing recordings in neurosurgical patients, we examined how groups of neurons in the human medial frontal cortex and hippocampus represent task contexts. When cued explicitly, task context was encoded in both brain areas and changed rapidly at task boundaries. Hippocampus exhibited a temporally dynamic code with fast decorrelation over time, preventing cross-temporal generalization. Medial frontal cortex exhibited a static code that decorrelated slowly, allowing generalization across minutes of time. When task context needed to be inferred as a latent variable, hippocampus encoded task context with a static code. These findings reveal two possible regimes for encoding minute-scale task-context representations that were engaged differently based on task demands.

5.
Nature ; 629(8011): 393-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632400

RESUMO

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Assuntos
Hipocampo , Memória de Curto Prazo , Neurônios , Adulto , Feminino , Humanos , Masculino , Potenciais de Ação , Cognição/fisiologia , Lobo Frontal/fisiologia , Lobo Frontal/citologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Ritmo Teta/fisiologia , Pessoa de Meia-Idade
6.
Sci Data ; 11(1): 214, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365977

RESUMO

We present a multimodal dataset of intracranial recordings, fMRI, and eye tracking in 20 participants during movie watching. Recordings consist of single neurons, local field potential, and intracranial EEG activity acquired from depth electrodes targeting the amygdala, hippocampus, and medial frontal cortex implanted for monitoring of epileptic seizures. Participants watched an 8-min long excerpt from the video "Bang! You're Dead" and performed a recognition memory test for movie content. 3 T fMRI activity was recorded prior to surgery in 11 of these participants while performing the same task. This NWB- and BIDS-formatted dataset includes spike times, field potential activity, behavior, eye tracking, electrode locations, demographics, and functional and structural MRI scans. For technical validation, we provide signal quality metrics, assess eye tracking quality, behavior, the tuning of cells and high-frequency broadband power field potentials to familiarity and event boundaries, and show brain-wide inter-subject correlations for fMRI. This dataset will facilitate the investigation of brain activity during movie watching, recognition memory, and the neural basis of the fMRI-BOLD signal.


Assuntos
Mapeamento Encefálico , Eletrocorticografia , Imageamento por Ressonância Magnética , Humanos , Encéfalo/fisiologia , Filmes Cinematográficos , Neurônios
7.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38423764

RESUMO

Pavlovian conditioning is thought to involve the formation of learned associations between stimuli and values, and between stimuli and specific features of outcomes. Here, we leveraged human single neuron recordings in ventromedial prefrontal, dorsomedial frontal, hippocampus, and amygdala while patients of both sexes performed an appetitive Pavlovian conditioning task probing both stimulus-value and stimulus-stimulus associations. Ventromedial prefrontal cortex encoded predictive value along with the amygdala, and also encoded predictions about the identity of stimuli that would subsequently be presented, suggesting a role for neurons in this region in encoding predictive information beyond value. Unsigned error signals were found in dorsomedial frontal areas and hippocampus, potentially supporting learning of non-value related outcome features. Our findings implicate distinct human prefrontal and medial temporal neuronal populations in mediating predictive associations which could partially support model-based mechanisms during Pavlovian conditioning.


Assuntos
Condicionamento Clássico , Neurônios , Córtex Pré-Frontal , Humanos , Condicionamento Clássico/fisiologia , Masculino , Feminino , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia , Adulto , Lobo Temporal/fisiologia , Adulto Jovem , Comportamento Apetitivo/fisiologia , Aprendizagem por Associação/fisiologia
9.
J Neurosurg Case Lessons ; 7(7)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346300

RESUMO

BACKGROUND: Developmental meningoceles of the sphenoid sinus are uncommon. When encountered, they are often associated with cerebrospinal fluid (CSF) rhinorrhea. OBSERVATIONS: The authors present the case of a 27-year-old female with a large meningocele eroding through the sella turcica and sphenoid sinus into the nasopharynx. The patient presented with intractable headaches and amenorrhea without CSF rhinorrhea. LESSONS: The patient underwent an endoscopic endonasal transsphenoidal reduction of the meningocele with reelevation of the pituitary gland and skull base reconstruction with abdominal fat graft and nasoseptal flap.

11.
Sci Data ; 11(1): 89, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238342

RESUMO

We present a dataset of 1809 single neurons recorded from the human medial temporal lobe (amygdala and hippocampus) and medial frontal lobe (anterior cingulate cortex, pre-supplementary motor area, ventral medial prefrontal cortex) across 41 sessions from 21 patients that underwent seizure monitoring with depth electrodes. Subjects performed a screening task (907 neurons) to identify images for which highly selective cells were present. Subjects then performed a working memory task (902 neurons), in which they were sequentially presented with 1-3 images for which highly selective cells were present and, following a maintenance period, were asked if the probe was identical to one of the maintained images. This Neurodata Without Borders formatted dataset includes spike times, extracellular spike waveforms, stimuli presented, behavior, electrode locations, and subject demographics. As validation, we replicate previous findings on the selectivity of concept cells and their persistent activity during working memory maintenance. This large dataset of rare human single-neuron recordings and behavior enables the investigation of the neural mechanisms of working memory in humans.


Assuntos
Memória de Curto Prazo , Córtex Motor , Humanos , Tonsila do Cerebelo/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA