Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0276820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494308

RESUMO

Obesity is a chronic multifactorial disease characterized by the accumulation of body fat and serves as a gateway to a number of metabolic-related diseases. Epidemiologic data indicate that Obesity is acting as a risk factor for neuro-psychiatric disorders such as schizophrenia, major depression disorder and vice versa. However, how obesity may biologically interact with neurodevelopmental or neurological psychiatric conditions influenced by hereditary, environmental, and other factors is entirely unknown. To address this issue, we have developed a pipeline that integrates bioinformatics and statistical approaches such as transcriptomic analysis to identify differentially expressed genes (DEGs) and molecular mechanisms in patients with psychiatric disorders that are also common in obese patients. Biomarker genes expressed in schizophrenia, major depression, and obesity have been used to demonstrate such relationships depending on the previous research studies. The highly expressed genes identify commonly altered signalling pathways, gene ontology pathways, and gene-disease associations across disorders. The proposed method identified 163 significant genes and 134 significant pathways shared between obesity and schizophrenia. Similarly, there are 247 significant genes and 65 significant pathways that are shared by obesity and major depressive disorder. These genes and pathways increase the likelihood that psychiatric disorders and obesity are pathogenic. Thus, this study may help in the development of a restorative approach that will ameliorate the bidirectional relation between obesity and psychiatric disorder. Finally, we also validated our findings using genome-wide association study (GWAS) and whole-genome sequence (WGS) data from SCZ, MDD, and OBE. We confirmed the likely involvement of four significant genes both in transcriptomic and GWAS/WGS data. Moreover, we have performed co-expression cluster analysis of the transcriptomic data and compared it with the results of transcriptomic differential expression analysis and GWAS/WGS.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Doenças Metabólicas , Esquizofrenia , Humanos , Transtorno Depressivo Maior/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Obesidade/complicações , Obesidade/genética , Predisposição Genética para Doença
2.
Heliyon ; 8(2): e08892, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35198765

RESUMO

Systemic Sclerosis (SSc) is an autoimmune disease associated with changes in the skin's structure in which the immune system attacks the body. A recent meta-analysis has reported a high incidence of cancer prognosis including lung cancer (LC), leukemia (LK), and lymphoma (LP) in patients with SSc as comorbidity but its underlying mechanistic details are yet to be revealed. To address this research gap, bioinformatics methodologies were developed to explore the comorbidity interactions between a pair of diseases. Firstly, appropriate gene expression datasets from different repositories on SSc and its comorbidities were collected. Then the interconnection between SSc and its cancer comorbidities was identified by applying the developed pipelines. The pipeline was designed as a generic workflow to demonstrate a premise comorbid condition that integrate regarding gene expression data, tissue/organ meta-data, Gene Ontology (GO), Molecular pathways, and other online resources, and analyze them with Gene Set Enrichment Analysis (GSEA), Pathway enrichment and Semantic Similarity (SS). The pipeline was implemented in R and can be accessed through our Github repository: https://github.com/hiddenntreasure/comorbidity. Our result suggests that SSc and its cancer comorbidities share differentially expressed genes, functional terms (gene ontology), and pathways. The findings have led to a better understanding of disease pathways and our developed methodologies may be applied to any set of diseases for finding any association between them. This research may be used by physicians, researchers, biologists, and others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA