Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 165118, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364845

RESUMO

Cadmium (Cd) being potentially toxic heavy metal, has become increasingly serious to vineyard soil and grapes in recent years. Soil type is one of the main factors affecting the absorption of Cd in grapes. To investigate the stabilization characteristics and form changes of Cd in different types of vineyard soils, a 90-days incubation experiment was conducted after exogenous Cd addition to 12 vineyard soils from typical vineyards in China. The inhibition of exogenous Cd on grape seedlings was determined based on the pit-pot incubation experiment (200 kg soil per pot). The results demonstrate that Cd concentration in all the sampling sites did not exceed the national screening values (GB15618-2018; i.e., 0.3 mg/kg when pH was lower than 7.5, 0.6 mg/kg when pH was higher than 7.5);. Cd in Fluvo-aquic soil 2, Red soils1, 2, 3 and Grey-Cinnamon soil is dominated by acid-soluble fraction, but was mainly in residual fraction in the remain soils. Throughout the aging process, proportion of the acid-soluble fraction increased and then decreased, while proportion of the residual fraction decreased and then increased, after exogenous Cd was added. The mobility coefficients of Cd in Fluvo-aquic soil 2 and Red soil 1, 2 increased 2.5, 3 and 2 folds, after exogenous Cd addition, respectively. Compared with CK (control), the correlation between total Cd content and its different fractions was relatively weak in the Cdl (low concentration) and Cdh (high concentration) groups. Poor Cd stabilization and strong inhibition of seedling growth rate were observed in Brown soil 1, black soil, red soil 1 and cinnamomic soil. Fluvo-aquic soil 2, 3 and Brown soil 2 showed good Cd stability and small inhibition effect on grape seedlings. These results show that Cd stability in soils and inhibition rate of grape seedlings by Cd are strongly influenced by soil type.


Assuntos
Poluentes do Solo , Vitis , Cádmio/análise , Solo/química , Fazendas , Plântula/química , Poluentes do Solo/análise , Ácidos
2.
Environ Pollut ; 307: 119501, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636713

RESUMO

Field application of manure compost introduces a large quantity of dissolved organic matter (DOM), which can affect the migration of DOM-associated contaminants. In this study, the transport of humic acid (HA) and compost-derived dissolved organic matter (CDOM) in two porous media under various conditions, including ionic types, ionic strength, and influent concentrations, were investigated by column experiments and modeling analysis. Increasing Na+ concentration did not affect the transport of CDOM and HA in quartz sands, but inhibited CDOM transport in ferrihydrite (Fh)-coated sands. The retention recoveries of CDOM in Fh-coated sands were not changed with increasing NaCl concentration, suggesting that the adsorption of CDOM on Fh-coated sands caused by increasing NaCl concentration was a reversible process. Ca2+ could reduce the mobility of CDOM and HA through bridge bonding and electrostatic interaction. CDOM had a higher mobility than HA in quartz sands under CaCl2 conditions because the aggregation stability of CDOM was stronger than that of HA. The ferrihydrite coating increased the roughness of sand surface, resulting in lower mobility of CDOM in the Fh-coated sands than in quartz sands. A part of CDOM adsorbed onto Fh-coated sand was strongly bound through ligand exchange-surface complexation. The pore volume of CDOM required to saturate adsorption sites onto the Fh-coated sand depends on the influent CDOM concentration. The influent CDOM with higher concentration required less pore volume to achieve adsorption equilibrium. Modeling analysis suggested that the types of deposition sites provided by Fh-coated sand are mainly irreversible sites. Our findings demonstrated that CDOM transport in the sand columns may change the porous medium's physicochemical properties and alter the hydrochemistry conditions. Therefore, these factors mentioned above should not be ignored when evaluating the environmental risks of CDOM.


Assuntos
Compostagem , Quartzo , Matéria Orgânica Dissolvida , Compostos Férricos , Substâncias Húmicas , Porosidade , Areia , Dióxido de Silício/química , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA