Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mil Med Res ; 10(1): 63, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072993

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid ß-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism. METHODS: A high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator. RESULTS: The expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC-MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin. CONCLUSIONS: Adipsin improves fatty acid ß-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Camundongos , Cromatografia Líquida , Fator D do Complemento/metabolismo , Fator D do Complemento/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Ácidos Graxos/efeitos adversos , Ácidos Graxos/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Lipídeos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espectrometria de Massas em Tandem
2.
Clin Transl Med ; 13(9): e1406, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37743632

RESUMO

BACKGROUND: As the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs). METHODS: ApoeKO mice were utilized as a model for atherosclerosis. Endothelium-specific transgenic mice were employed to disrupt the expression level of Rnd3 in vivo. Mechanistic investigation of the impact of Rnd3 on endothelial cell pyroptosis was carried out using liquid chromatography tandem mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP) assays, and molecular docking. RESULTS: Evidence from gain-of-function and loss-of-function studies denoted a protective role for Rnd3 against ECs pyroptosis. Downregulation of Rnd3 sensitized ECs to pyroptosis under oxidized low density lipoprotein (oxLDL) challenge and exacerbated atherosclerosis, while overexpression of Rnd3 effectively prevented these effects. LC-MS/MS, Co-IP assay, and molecular docking revealed that Rnd3 negatively regulated pyroptosis signaling by direct interaction with the ring finger domain of tumor necrosis factor receptor-associated factor 6 (TRAF6). This leads to the suppression of K63-linked TRAF6 ubiquitination and the promotion of K48-linked TRAF6 ubiquitination, inhibiting the activation of NF-κB and promoting the degradation of TRAF6. Moreover, TRAF6 knockdown countered Rnd3 knockout-evoked exacerbation of EC pyroptosis in vivo and vitro. CONCLUSIONS: These findings establish a critical functional connection between Rnd3 and the TRAF6/NF-κB/NLRP3 signaling pathway in ECs, indicating the essential role of Rnd3 in preventing pyroptosis of ECs.


Assuntos
Aterosclerose , Células Endoteliais , Piroptose , Fator 6 Associado a Receptor de TNF , Proteínas rho de Ligação ao GTP , Animais , Camundongos , Aterosclerose/genética , Cromatografia Líquida , Simulação de Acoplamento Molecular , NF-kappa B , Piroptose/genética , Proteínas rho de Ligação ao GTP/genética , Espectrometria de Massas em Tandem , Fator 6 Associado a Receptor de TNF/genética
3.
BMC Med ; 21(1): 197, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237266

RESUMO

BACKGROUND: Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS: Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS: The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS: Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos , Animais , Cardiomiopatias Diabéticas/genética , Diabetes Mellitus Experimental/complicações , Células Endoteliais , Fator D do Complemento/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Células Cultivadas
4.
Theranostics ; 12(17): 7250-7266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438502

RESUMO

Rationale: Extracellular matrix (ECM) remodeling, a key pathological feature in diabetic cardiomyopathy (DCM), is triggered by oxidative stress, inflammation, and various metabolic disorders in the heart. Cardiac fibroblasts (CFs) are the primary source of ECM proteins and the ultimate effector cells in ECM remodeling. CFs are turned on and differentiated into myofibroblasts in response to profibrotic signaling. Rnd3 is a small Rho-GTPase involved in the regulation of cell-cycle distribution, cell migration, and cell morphogenesis. Emerging evidence suggests a link between Rnd3 expression and onset of cardiovascular diseases. However, the role of Rnd3 in DCM remains unknown. Methods: Flow cytometry was employed to separate different types of cardiac cells. Type 2 diabetes mellitus was established in Rnd3 fibroblast-specific knockout and transgenic mice. RNA sequencing and chromatin immunoprecipitation assay were used to discern signaling pathways involved. Results: Rnd3 expression was reduced in cardiac tissues of diabetic mice, with CFs being the primary cell type. Fibroblast-specific upregulation of Rnd3 in vivo was protective against DCM, whereas Rnd3 downregulation in fibroblasts accentuated cardiac oxidative stress, fibrosis, ventricular remodeling, and dysfunction. Moreover, in vitro Rnd3 overexpression significantly attenuated reactive oxygen species production, CF migration and proliferation under high levels of glucose (35 mmol/L) and palmitic acid (500 µmol/L) challenge. Furthermore, RNA sequencing indicated that Notch and TGF-ß signaling were significantly suppressed upon Rnd3 overexpression. Mechanistically, Rnd3 regulated Notch and TGF-ß signaling by interacting with NICD and ROCK1, respectively. Specifically, glucotoxicity and lipotoxicity control Rnd3 expression by regulating the binding of Nr1H2 and Rnd3 promoter. Conclusions: Our findings provide compelling evidence in that fibroblast-specific activation of Rnd3 protects against cardiac remodeling in DCM, indicating promises of targeting Rnd3 in the treatment of DCM.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Miofibroblastos , Remodelação Ventricular , Animais , Camundongos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos Transgênicos , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia
5.
Front Cardiovasc Med ; 9: 1003282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172581

RESUMO

As a vital adipokine, Adipsin is closely associated with cardiovascular risks. Nevertheless, its role in the onset and development of cardiovascular diseases remains elusive. This study was designed to examine the effect of Adipsin on survival, cardiac dysfunction and adverse remodeling in the face of myocardial infarction (MI) injury. In vitro experiments were conducted to evaluate the effects of Adipsin on cardiomyocyte function in the face of hypoxic challenge and the mechanisms involved. Our results showed that Adipsin dramatically altered expression of proteins associated with iron metabolism and ferroptosis. In vivo results demonstrated that Adipsin upregulated levels of Ferritin Heavy Chain (FTH) while downregulating that of Transferrin Receptor (TFRC) in peri-infarct regions 1 month following MI. Adipsin also relieved post-MI-associated lipid oxidative stress as evidenced by decreased expression of COX2 and increased GPX4 level. Co-immunoprecipitation and immunofluorescence imaging prove a direct interaction between Adipsin and IRP2. As expected, cardioprotection provided by Adipsin depends on the key molecule of IRP2. These findings revealed that Adipsin could be efficiently delivered to the heart by exosomes derived from pericardial adipose tissues. In addition, Adipsin interacted with IRP2 to protect cardiomyocytes against ferroptosis and maintain iron homeostasis. Therefore, Adipsin-overexpressed exosomes derived from pericardial adipose tissues may be a promising therapeutic strategy to prevent adverse cardiac remodeling following ischemic heart injury.

6.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166533, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064133

RESUMO

Phagocytosis of oxidized low-density lipoprotein (OxLDL) by macrophages yields "foam cells" and serves as a hallmark of atherosclerotic lesion. Adipsin is a critical component of the complement activation pathway. Recent evidence has indicated an obligatory role for Adipsin in pathological models including ischemia-reperfusion and sepsis. Adipsin levels are significantly decreased in patients with asymptomatic carotid atherosclerosis, implying the role for Adipsin as a potential marker of asymptomatic carotid atherosclerosis. This study was designed to evaluate the role for Adipsin in atherosclerosis and the mechanisms involved using both in vivo and in vitro experiments. ApoE-/-/AdipsinTg mice were constructed and were fed a high-fat diet for 12 weeks. Compared with ApoE-/- mice, area of the sclerotic plaques was reduced, along with lower macrophage deposition within the plaque in ApoE-/-/AdipsinTg mice. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were stimulated with oxLDL (50 µg/ml). Adenovirus vectors containing the Adipsin gene were transfected into macrophages. Lipid accumulation was observed by Oil red O staining. Western blot and reverse transcription-polymerase chain reaction data revealed that Adipsin overexpression inhibited oxLDL-induced lipid uptake and foam cell formation and upregulation of CD36 and PPARγ in Ad-Adipsin-transfected macrophages. In addition, the PPARγ-specific agonist GW1929 reversed Adipsin overexpression-evoked inhibitory effect on lipid uptake. These results demonstrate unequivocally that Adipsin inhibits lipid uptake in a PPARγ/CD36-dependent manner and prevents the formation of foam cells, implying that Adipsin may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Antígenos CD36/metabolismo , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Fator D do Complemento/genética , Fator D do Complemento/metabolismo , Células Espumosas , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , PPAR gama/metabolismo , Placa Aterosclerótica/metabolismo , Transdução de Sinais
7.
Iran J Basic Med Sci ; 24(2): 150-159, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33953853

RESUMO

OBJECTIVES: Physical exercise has emerged as an effective therapy to mitigate cardiac remodelling in diabetic cardiomyopathy (DCM). The results of our previous studies revealed mammalian sterile 20-like kinase 1 (Mst1) is a key regulator of the progression of DCM. However, the precise molecular mechanism of physical exercise-induced cardiac protection and its association with Mst1 inhibition remain unclear. MATERIALS AND METHODS: Wildtype and Mst1 transgenic mice were challenged with streptozotocin (STZ) to induce experimental diabetes and were divided into sedentary and exercise groups. The DCM phenotype was evaluated by echocardiography, Masson's trichrome staining, TUNEL and immunoblotting analyses. The exercise-regulated miRNAs targeting Mst1 were predicted by bioinformatic analysis and later confirmed by RT-qPCR, immunoblotting, and dual-luciferase reporter assays. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulate diabetes to elucidate the underlying mechanisms. RESULTS: Compared to the sedentary diabetic control, physical exercise inhibited Mst1 and alleviated cardiac remodelling in mice with DCM, as evidenced by decreases in the left ventricular end-systolic internal dimension (LVESD) and left ventricular end-diastolic internal dimension (LVEDD), increases in the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), attenuation of collagen deposition, and the suppression of apoptosis. Bioinformatic analysis and apoptosis assessments revealed exercise exerted protective effects against DCM through miR-486a-5p release. Moreover, luciferase reporter assays confirmed miR-486a-5p directly suppressed the expression of Mst1, thereby inhibiting the apoptosis of cardiomyocytes subjected to high glucose treatment. CONCLUSION: Physical exercise inhibits cardiac remodelling in DCM, and the mechanism is associated with miR-486a-5p release-induced Mst1 inhibition.

8.
Diabetes Metab Syndr Obes ; 13: 4801-4808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324079

RESUMO

BACKGROUND: Endothelial-to-mesenchymal transition (EndMT) is an important source of myofibroblasts that directly affects cardiac function in diabetic cardiomyopathy (DCM) via an unknown underlying mechanism. Sirt6 is a member of the Sirtuin family of NAD(+)-dependent enzymes that plays an important role in glucose and fatty acid metabolism. In this study, we investigated whether Sirt6 participates in EndMT during the development of T2DM and the possible underlying regulatory mechanisms. METHODS: Endothelium-specific Sirt6 knockout (Sirt6-KOEC) mice (C57BL/6 genetic background) were generated using the classic Cre/loxp gene recombination system. T2DM was induced in eight-week-old male mice by feeding with a high-fat diet for three weeks followed by i.p. injection with 30 mg/kg of streptozotocin. The weight, lipids profiles, insulin, food intake and water intake of experimental animals were measured on a weekly basis. Cardiac microvascular endothelial cells (CMECs) were obtained from adult male mice; the isolated cells were cultured with high glucose (HG; 33 mmol/L) and palmitic acid (PA; 500 µmol/L) in DMEM for 24 h, or with normal glucose (NG; 5 mmol/L) as the control. RESULTS: Sirt6 expression is significantly downregulated in CMECs treated with HG+PA. Additionally, Sirt6-KOEC was found to worsen DCM, as indicated by aggravated perivascular fibrosis, cardiomyocyte hypertrophy, and decreased cardiac function. In vitro, Sirt6 knockdown exacerbated the proliferation, and migration of CMECs exposed to HG+PA. Mechanistically, Sirt6 knockdown significantly enhanced Notch1 activation in CMECs treated with HG+PA, whereas Notch1 adenoviral interference significantly blunted the effects of Sirt6 knockdown on CMECs. CONCLUSION: This study is the first to demonstrate that Sirt6 participates in EndMT via the Notch1 signaling pathway in CMECs stimulated with HG+PA. Therefore, the findings of this study suggest that Sirt6 could provide a potential treatment strategy for DCM.

9.
Front Physiol ; 11: 1082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982797

RESUMO

Cardiac remodeling and dysfunction are responsible for the high mortality after myocardial infarction (MI). We assessed the potential for Shank3 to alleviate the post-infarction cardiac dysfunction. The experimental MI mice model was constructed by left anterior descending coronary artery ligation. Shank3 knockout aggravated cardiac dysfunction after MI, while Shank3 overexpression alleviated it. The histological examination showed that the infarct size was significantly increased in the acute phase of MI in the Shank3 knockout group, and the cardiac dysfunction of the Shank3 knockout group was even more severe than the Shank3 overexpression group, revealed by echocardiography analyses. In vitro, cultured neonatal cardiomyocytes were subjected to simulated MI. Shank3 downregulation curbed LC3 expression and autophagosome-lysosome fusion. Furthermore, Shank3 downregulation increased cardiomyocyte apoptosis. In contrast, Shank3 upregulation induced autophagy, and inhibited apoptosis under hypoxia. In vivo, western blot analysis showed decreased levels of Atg7, Beclin1, LC3-II, and Bcl-2 as well as increased expression of p62, cleaved caspase-3, and cleaved caspase-9 in the Shank3 knockout group which suffered from MI. On the other hand, it also revealed that Shank3 overexpression induced autophagy and inhibited apoptosis after MI. Shank3 may serve as a new target for improving cardiac function after MI by inducing autophagy while inhibiting apoptosis.

10.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165806, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320827

RESUMO

Diabetic cardiomyopathy (DCM) accounts for increasing deaths of diabetic patients, and effective therapeutic targets are urgently needed. Myocardial lipotoxicity, which is caused by cardiac non-oxidative metabolic fatty acids and cardiotoxic fatty acid metabolites accumulation, has gained more attention to explain the increasing prevalence of DCM. However, whether mammalian Ste20-like kinase 1 (Mst1) plays a role in lipotoxicity in type 2 diabetes-induced cardiomyopathy has not yet been illustrated. Here, we found that Mst1 expression was elevated transcriptionally in the hearts of type 2 diabetes mellitus mice and palmitic acid-treated neonatal rat ventricular myocytes. Adeno-associated virus 9 (AAV9)-mediated Mst1 silencing in db/db mouse hearts significantly alleviated cardiac dysfunction and fibrosis. Notably, Mst1 knockdown in db/db mouse hearts decreased lipotoxic apoptosis and inflammatory response. Mst1 knockdown exerted protective effects through inactivation of MAPK/ERK kinase kinase 1 (MEKK1)/c-Jun N-terminal kinase (JNK) signaling pathway. Moreover, lipotoxicity induced Mst1 expression through promoting the binding of forkhead box O3 (FoxO3) and Mst1 promoter. Conclusively, we elucidated for the first time that Mst1 expression is regulated by FOXO3 under lipotoxicity stimulation and downregulation of Mst1 protects db/db mice from lipotoxic cardiac injury through MEKK1/JNK signaling inhibition, indicating that Mst1 abrogation may be a potential treatment strategy for DCM in type 2 diabetic patients.


Assuntos
Diabetes Mellitus Experimental/genética , Cardiomiopatias Diabéticas/genética , Ácidos Graxos/toxicidade , Proteína Forkhead Box O3/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 1/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Ácidos Graxos/metabolismo , Proteína Forkhead Box O3/agonistas , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Cultura Primária de Células , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais
11.
Front Cell Dev Biol ; 8: 628842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553168

RESUMO

The disruption of mitochondrial dynamics is responsible for the development of diabetic cardiomyopathy (DCM). However, the mechanisms that regulate the balance of mitochondrial fission and fusion are not well-understood. Wild-type, Mst1 transgenic and Mst1 knockout mice were induced with experimental diabetes by streptozotocin injection. In addition, primary neonatal cardiomyocytes were isolated and cultured to simulate diabetes to explore the mechanisms. Echocardiograms and hemodynamic measurements revealed that Mst1 knockout alleviated left ventricular remodeling and cardiac dysfunction in diabetic mice. Mst1 knockdown significantly decreased the number of TUNEL-positive cardiomyocytes subjected to high-glucose (HG) medium culture. Immunofluorescence study indicated that Mst1 overexpression enhanced, while Mst1 knockdown mitigated mitochondrial fission in DCM. Mst1 participated in the regulation of mitochondrial fission by upregulating the expression of Drp1, activating Drp1S616 phosphorylation and Drp1S637 dephosphorylation, as well as promoting Drp1 recruitment to the mitochondria. Furthermore, Drp1 knockdown abolished the effects of Mst1 on mitochondrial fission, mitochondrial membrane potential and mitochondrial dysfunction in cardiomyocytes subjected to HG treatment. These results indicated that Mst1 knockout inhibits mitochondrial fission and alleviates left ventricular remodeling thus prevents the development of DCM.

12.
Anatol J Cardiol ; 21(3): 163-171, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30821716

RESUMO

OBJECTIVE: Currently, there is still no effective strategy to diminish the infarct size (IS) in patients with ST-segment elevation myocardial infarction (STEMI). According to a previous animal study, nicorandil treatment is a promising pharmaceutical treatment to limit the infarct area. In this study, we aim to investigate the effects of continual nicorandil administration on the IS and the clinical outcomes in patients with STEMI who underwent primary percutaneous coronary intervention (pPCI). METHODS: One hundred seventeen patients with STEMI and undergoing pPCI were randomly divided into the sustained nicorandil group (5 mg, three times daily) or the control group (only single nicorandil before PCI). The primary endpoint was the IS, evaluated by single-photon emission computed tomography (SPECT) 3 months after pPCI. RESULTS: Eighty-five patients completed the IS assessment via SPECT, and 99 participants were available for follow-up after 6 months. Finally, there was a statistical difference in the IS between the nicorandil and control groups {13% [interquartile range (IQR), 8-17] versus 16% [IQR, 12-20.3], p=0.027}. Additionally, we observed that maintained nicorandil administration significantly improved the left ventricular ejection fraction at 3 months and enhanced the activity tolerance (physical limitation and angina stability) at 6 months after PCI. CONCLUSION: Sustained nicorandil treatment reduced the IS and improved the clinical outcomes compared to the single nicorandil administration for patients with STEMI undergoing the pPCI procedure. Continuous cardioprotective therapy may be more beneficial for patients with STEMI.


Assuntos
Nicorandil/uso terapêutico , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Vasodilatadores/uso terapêutico , Administração Oral , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nicorandil/administração & dosagem , Intervenção Coronária Percutânea , Estudos Prospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Resultado do Tratamento , Vasodilatadores/administração & dosagem
13.
J Pineal Res ; 63(2)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28480597

RESUMO

This study investigated the effects of melatonin on diabetic cardiomyopathy (DCM) and determined the underlying mechanisms. Echocardiography indicated that melatonin notably mitigated the adverse left ventricle remodeling and alleviated cardiac dysfunction in DCM. The mechanisms were attributed to increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin inhibited Mst1 phosphorylation and promoted Sirt3 expression in DCM. These results indicated that melatonin may exert its effects through Mst1/Sirt3 signaling. To verify this hypothesis, a DCM model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1-/- ) mice was constructed. As expected, melatonin increased autophagy, reduced apoptosis and improved mitochondrial biogenesis in Mst1 Tg mice subjected to DCM injury, while it had no effects on Mst1-/- mice. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated diabetes to probe the mechanisms involved. Melatonin administration promoted autophagic flux as demonstrated by elevated LC3-II and lowered p62 expression in the presence of bafilomycin A1. The results suggest that melatonin alleviates cardiac remodeling and dysfunction in DCM by upregulating autophagy, limiting apoptosis, and modulating mitochondrial integrity and biogenesis. The mechanisms are associated with Mst1/Sirt3 signaling.


Assuntos
Cardiomiopatias Diabéticas , Fator de Crescimento de Hepatócito , Miócitos Cardíacos , Proteínas Proto-Oncogênicas , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3 , Animais , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Macrolídeos/farmacologia , Melatonina , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1962-1972, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27613967

RESUMO

Myocardial infarction (MI), which is characterized by chamber dilation and left ventricular (LV) dysfunction, represents a major cause of morbidity and mortality worldwide. Polydatin (PD), a monocrystalline and polyphenolic drug isolated from a traditional Chinese herb (Polygonum cuspidatum), alleviates mitochondrial dysfunction. We investigated the effects and underlying mechanisms of PD in post-MI cardiac dysfunction. We constructed an MI model by left anterior descending (LAD) coronary artery ligation using wild-type (WT) and Sirt3 knockout (Sirt3-/-) mice. Cardiac function, cardiomyocytes autophagy levels, apoptosis and mitochondria biogenesis in mice that underwent cardiac MI injury were compared between groups. PD significantly improved cardiac function, increased autophagy levels and decreased cardiomyocytes apoptosis after MI. Furthermore, PD improved mitochondrial biogenesis, which is evidenced by increased ATP content, citrate synthase (CS) activity and complexes I/II/III/IV/V activities in the cardiomyocytes subjected to MI injury. Interestingly, Sirt3 knockout abolished the protective effects of PD administration. PD inhibited apoptosis in cultured neonatal mouse ventricular myocytes subjected to hypoxia for 6h to simulate MI injury. PD increased GFP-LC3 puncta, and reduced the accumulation of protein aggresomes and p62 in cardiomyocytes after hypoxia. Interestingly, the knock-down of Sirt3 nullified the PD-induced beneficial effects. Thus, the protective effects of PD are associated with the up-regulation of autophagy and improvement of mitochondrial biogenesis through Sirt3 activity.


Assuntos
Apoptose , Glucosídeos/farmacologia , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Sirtuína 3/metabolismo , Estilbenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Sirtuína 3/genética
15.
J Pineal Res ; 62(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27696525

RESUMO

Melatonin reportedly protects against several cardiovascular diseases including ischemia/reperfusion (I/R), atherosclerosis, and hypertension. The present study investigated the effects and mechanisms of melatonin on cardiomyocyte autophagy, apoptosis, and mitochondrial injury in the context of myocardial infarction (MI). We demonstrated that melatonin significantly alleviated cardiac dysfunction after MI. Four weeks after MI, echocardiography and Masson staining indicated that melatonin notably mitigated adverse left ventricle remodeling. The mechanism may be associated with increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin significantly inhibited Mst1 phosphorylation while promoting Sirt1 expression after MI, which indicates that Mst1/Sirt1 signaling may serve as the downstream target of melatonin. We thus constructed a MI model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1-/- ) mice. The absence of Mst1 abolished the favorable effects of melatonin on cardiac injury after MI. Consistently, melatonin administration did not further increase autophagy, decrease apoptosis, or alleviate mitochondrial integrity and biogenesis in Mst1 knockout mice subjected to MI injury. These results suggest that melatonin alleviates postinfarction cardiac remodeling and dysfunction by upregulating autophagy, decreasing apoptosis, and modulating mitochondrial integrity and biogenesis. The attributed mechanism involved, at least in part, Mst1/Sirt1 signaling.


Assuntos
Melatonina/metabolismo , Infarto do Miocárdio/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Remodelação Ventricular/fisiologia , Animais , Apoptose , Western Blotting , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Remodelação Ventricular/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1951-1961, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825852

RESUMO

The incidence and prevalence of heart failure (HF) in the world are rapidly rising possibly attributed to the worsened HF following myocardial infarction (MI) in recent years. Here we examined the effects of oncostatin M (OSM) on postinfarction cardiac remodeling and the underlying mechanisms involved. MI model was induced using left anterior descending coronary artery (LAD) ligation. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated MI. Our results revealed that OSM alleviated left ventricular remodeling, promoted cardiac function, restored mitochondrial cristae density and architecture disorders after 4weeks of MI. Enhanced autophagic flux was indicated in cardiomyocytes transduced with Ad-GFP -LC3 in the OSM treated group as compared with the MI group. OSM receptor Oß knockout blocked the beneficial effects of OSM in postinfarction cardiac remodeling and cardiomyocytes autophagy. OSM pretreatment significantly alleviated left ventricular remodeling and dysfunction in Mst1 transgenic mice, while it failed to reverse further the postinfarction left ventricular dilatation and cardiac function in the Mst1 knockout mice. Our data revealed that OSM alleviated postinfarction cardiac remodeling and dysfunction by enhancing cardiomyocyte autophagy. OSM holds promise as a therapeutic target in treating HF after MI through Oß receptor by inhibiting Mst1 phosphorylation.


Assuntos
Autofagia , Fator de Crescimento de Hepatócito/metabolismo , Infarto do Miocárdio/metabolismo , Oncostatina M/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular , Animais , Fator de Crescimento de Hepatócito/genética , Camundongos , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Proteínas Proto-Oncogênicas/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia
17.
Curr Drug Targets ; 18(15): 1792-1799, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27425648

RESUMO

BACKGROUND: Diabetes mellitus (DM) caused 1.3 million deaths in 2010, and cardiovascular disease is the leading cause of mortality of diabetic patients. Cardiovascular disease in DM involves complex pathophysiology processes, which are promoted by many risk factors. OBJECTIVE: Genetic, epigenetic, lifestyle and environmental factors are responsible for the current epidemic of diabetes and the subsequent increased risk of cardiovascular disease. Over the past years, targets focusing on the increased risk of cardiovascular events in diabetic patients have attracted significant interest. CONCLUSION: Within this review, the roles of insulin resistance, endothelial dysfunction and lifestyle changes in the development of cardiovascular disease in diabetic patients are discussed. Potential strategies and challenges in targeting cardiovascular risks in diabetic individuals are also considered.


Assuntos
Doenças Cardiovasculares/etiologia , Complicações do Diabetes/etiologia , Diabetes Mellitus/genética , Endotélio Vascular/fisiopatologia , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/psicologia , Epigênese Genética , Predisposição Genética para Doença , Humanos , Resistência à Insulina , Estilo de Vida
18.
Sci Rep ; 6: 34199, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680548

RESUMO

Cardiovascular complications account for a substantial proportion of morbidity and mortality in diabetic patients. Abnormalities of cardiac microvascular endothelial cells (CMECs) lead to impaired cardiac microvascular vessel integrity and subsequent cardiac dysfunction, underlining the importance of coronary microvascular dysfunction. In this study, experimental diabetes models were constructed using Mst1 transgenic, Mst1 knockout and sirt1 knockout mice. Diabetic Mst1 transgenic mice exhibited impaired cardiac microvessel integrity and decreased cardiac function. Mst1 overexpression deceased CMECs autophagy as evidenced by decreased LC3 expression and enhanced protein aggregation when subjected to high glucose culture. Mst1 knockout improved cardiac microvessel integrity and enhanced cardiac functions in diabetic mice. Mst1 knockdown up-regulated autophagy as indicated by more typical autophagosomes and increased LC3 expression in CMECs subjected to high glucose cultures. Mst1 knockdown also promoted autophagic flux in the presence of bafilomycin A1. Mst1 overexpression increased CMECs apoptosis, whereas Mst1 knockout decreased CMECs apoptosis. Sirt1 knockout abolished the effects of Mst1 overexpression in cardiac microvascular injury and cardiac dysfunction. In conclusion, Mst1 knockout preserved cardiac microvessel integrity and improved cardiac functions in diabetic mice. Mst1 decreased sirt1 activity, inhibited autophagy and enhanced apoptosis in CMECs, thus participating in the pathogenesis of diabetic coronary microvascular dysfunction.

19.
Medicine (Baltimore) ; 95(36): e4774, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27603377

RESUMO

BACKGROUND: The instantaneous wave-free ratio (iFR) is a new vasodilator-free index of coronary stenosis severity. The aim of this meta-analysis is to assess the diagnostic performance of iFR for the evaluation of coronary stenosis severity with fractional flow reserve as standard reference. METHODS: We searched PubMed, EMBASE, CENTRAL, ProQuest, Web of Science, and International Clinical Trials Registry Platform (ICTRP) for publications concerning the diagnostic value of iFR. We used a random-effects covariate to synthesize the available data of sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR). Overall test performance was summarized by the summary receiver operating characteristic curve (sROC) and the area under the curve (AUC). RESULTS: Eight studies with 1611 subjects were included in the meta-analysis. The pooled sensitivity, specificity, LR+, LR-, and DOR for iFR were respectively 73.3% (70.1-76.2%), 86.4% (84.3-88.3%), 5.71 (4.43-7.37), 0.29 (0.22-0.38), and 20.54 (16.11-26.20). The area under the summary receiver operating characteristic curves for iFR was 0.8786. No publication bias was identified. CONCLUSION: The available evidence suggests that iFR may be a new, simple, and promising technology for coronary stenosis physiological assessment.


Assuntos
Estenose Coronária/diagnóstico , Estenose Coronária/fisiopatologia , Índice de Gravidade de Doença , Área Sob a Curva , Diástole , Reserva Fracionada de Fluxo Miocárdico , Humanos , Curva ROC , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
J Mol Cell Cardiol ; 98: 108-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27496379

RESUMO

Emerging evidence favors the notion that macrophage autophagy plays a prominent role in the pathogenesis of vulnerable plaque, suggesting the therapeutic potential of targeting autophagy in atherosclerosis. Here ApoE(-/-) mice were crossed with Mst1 knockout or Mst1 Tg mice to generate ApoE(-/-):Mst1(-/-) and ApoE(-/-):Mst1Tg mice. All animals were fed high-fat-diet for 4months to induce arterial atherosclerosis. Murine macrophage RAW264.7 cells were subjected to ox-LDL (50µg/mL) in an effort to examine the cellular mechanisms. A significant increase in the levels of Mst1 and p-Mst1 was observed in the aorta of ApoE(-/-) mice. Mst1 knockout significantly reduced atherosclerotic area, decreased lipid core area and macrophage accumulation as compared with ApoE(-/-) mice. Along the same line, Mst1 overexpression increased plaque area, lipid core and macrophage accumulation as compared with ApoE(-/-) mice. Mst1 deficiency significantly increased levels of Beclin1 and LC3II, while decreased that of p62 in aortic atherosclerosis. Moreover, in vitro data indicated that Mst1 knockdown prompted more typical autophagosomes upon ox-LDL challenge. Mst1 knockdown also enhanced autophagic flux as evidenced by GFP-mRFP-LC3 staining, increased LC3-II expression and decreased p62 expression in the presence of bafilomycin A1. Mst1 knockdown decreased, while Mst1 overexpression increased macrophage apoptosis upon ox-LDL exposure. In conclusion, Mst1 deficiency diminishes atherosclerosis and stabilizes atherosclerotic plaques in ApoE(-/-) mice. Mst1 may participate in atherosclerosis progression through inhibition of macrophage autophagy and promotion of macrophage apoptosis.


Assuntos
Apoptose/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Autofagia/genética , Fator de Crescimento de Hepatócito/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/genética , Animais , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genótipo , Fator de Crescimento de Hepatócito/deficiência , Fator de Crescimento de Hepatócito/metabolismo , Lipoproteínas LDL/administração & dosagem , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA