Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB J ; 34(9): 12308-12323, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32721050

RESUMO

Genetic variation of insulin receptor substrate 1 (IRS-1) was found to modulate the insulin resistance of adipose tissues, but the underlying mechanism was not clear. To investigate how the IRS-1 was involved in the browning of white adipose tissue through miRNA, we identified a mutated Irs-1 (Irs-1-/- ) mice model and found that this mice had a reduced subcutaneous WAT (sWAT) and increased brown adipose tissue (BAT) in the interscapular region. So we isolated the bone marrow stromal cells and analyzed differentially expressed miRNAs and adipogenesis-related genes with miRNA arrays and PCR arrays. Irs-1-/- mice showed decreased miR-503 expression, but increased expression of its target, bone morphogenetic protein receptor type 1a (BMPR1a). Overexpression of miR-503 in preadipocytes downregulated BMPR1a and impaired adipogenic activity through the phosphotidylinositol 3-kinase (PI3K/Akt) pathway, while the inhibitor had the opposite effect. In both Irs-1-/- and cold-induced models, sWAT exhibited BAT features, and showed tissue-specific increased BMPR1a expression, PI3K expression, and Akt phosphorylation. Thus, our results showed that IRS-1 regulated brown preadipocyte differentiation and induced browning in sWAT through the miR-503-BMPR1a pathway, which played important roles in high-fat diet-induced obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Proteínas Substratos do Receptor de Insulina/fisiologia , MicroRNAs/fisiologia , Obesidade/prevenção & controle , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Mol Cells ; 40(2): 123-132, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28190325

RESUMO

Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse (Irs-1-/-) with growth retardation and subcutaneous adipocyte atrophy. Irs-1-/- mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of Irs-1-/- mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of Irs-1-/- mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.


Assuntos
Proteínas Substratos do Receptor de Insulina/deficiência , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Células Cultivadas , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina , Masculino , Camundongos , Camundongos Transgênicos , Receptor de Insulina/metabolismo , Transdução de Sinais
3.
Dev Growth Differ ; 59(2): 94-103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28211947

RESUMO

This study explored the mechanism underlying the stimulation of collagen synthesis and osteoblastic differentiation by insulin-like growth factor 1 (IGF1) in primary mouse osteoblasts. Primary mouse calvarial osteoblasts were cultured and treated with various doses of IGF1 before transfection with siRNA targeting the collagen type I alpha 2 (Col1a2) or La ribonucleoprotein domain family member 6 (Larp6) genes. Alkaline phosphatase (ALP) activity, osteocalcin staining, alizarin red quantification and the expression level of runt-related transcription factor 2 (RUNX2) were performed to assess the differentiation of pre-osteoblasts. Based on Western blot analysis, IGF1 up-regulated COL1A2 protein expression in the primary osteoblasts in a dose- and time-dependent manner. In addition, Col1a2 interference inhibited the differentiation and mineralization of osteoblasts. IGF1 also stimulated the differentiation of mouse primary osteoblasts and increased LARP6 expression during osteogenic differentiation. RNA-Immunoprecipitation (IP) indicated that LARP6 could bind to Col1a2 mRNA after IGF1 stimulation. However, transfection of Larp6-specific siRNA significantly reduced collagen and ALP secretion, mineralization and inhibited the expression of osteocalcin and RUNX2, indicating that Larp6 interference inhibited the differentiation ability of primary mouse calvarial osteoblasts, and these effects could not be reversed by IGF1. Thus, IGF1 could promote COL1A2 expression and osteoblast differentiation in primary mouse calvarial pre-osteoblasts by increasing LARP6 expression via a posttranscriptional mechanism.


Assuntos
Autoantígenos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colágeno Tipo I/biossíntese , Fator de Crescimento Insulin-Like I/farmacologia , Osteogênese/efeitos dos fármacos , Ribonucleoproteínas/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Animais Recém-Nascidos , Autoantígenos/genética , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Colágeno Tipo I/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas/genética , Fatores de Tempo , Antígeno SS-B
4.
Nutr Metab (Lond) ; 14: 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070205

RESUMO

BACKGROUND: Fasting is the most widely prescribed and self-imposed strategy for treating excessive weight gain and obesity, and has been shown to exert a number of beneficial effects. The aim of the present study was to determine the exact role of fasting and subsequent refeeding on fat distribution in mice. METHODS: C57/BL6 mice fasted for 24 to 72 h and were then subjected to refeeding for 72 h. At 24, 48 and 72 h of fasting, and 12, 24, 48 and 72 h of refeeding, the mice were sacrificed, and serum and various adipose tissues were collected. Serum biochemical parameters, adipose tissue masses and histomorphological analysis of different depots were detected. MRNA was isolated from various adipose tissues, and the expressions of thermogenesis, visceral signature and lipid metabolism-related genes were examined. The phenotypes of adipose tissues between juvenile and adult mice subjected to fasting and refeeding were also compared. RESULTS: Fasting preferentially consumed mesenteric fat mass and decreased the cell size of mesenteric depots; however, refeeding recovered the mass and morphology of inguinal adipose tissues preferentially compared with visceral depots. Thermogenesis-related gene expression in the inguinal WAT and interscapular BAT were suppressed. Mitochondrial biogenesis was affected by fasting in a depot-specific manner. Furthermore, a short period of fasting led to an increase in visceral signature genes (Wt1, Tcf21) in subcutaneous adipose tissue, while the expression of these genes decreased sharply as the fasting time increased. Additionally, lipogenesis-related markers were enhanced to a greater extent greater in subcutaneous depots compared with those in visceral adipose tissues by refeeding. Although similar phenotypic changes in adipose tissue were observed between juvenile mice and adult mice subjected to fasting and refeeding, the alterations appeared earlier and more sensitively in juvenile mice. CONCLUSIONS: Fasting preferentially consumes lipids in visceral adipose tissues, whereas refeeding recovers lipids predominantly in subcutaneous adipose tissues, which indicated the significance of plasticity of adipose organs for fat distribution when subject to food deprivation or refeeding.

5.
FASEB J ; 30(12): 4214-4226, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27623927

RESUMO

Insulin promotes bone formation via a well-studied canonical signaling pathway. An adapter in this pathway, insulin-receptor substrate (IRS)-1, has been implicated in the diabetic osteopathy provoked by impaired insulin signaling. To further investigate IRS-1's role in the bone metabolism, we generated Irs-1-deficient Irs-1smla/smla mice. These null mice developed a spontaneous mutation that led to an increase in trabecular thickness (Tb.Th) in 12-mo-old, but not in 2-mo-old mice. Analyses of the bone marrow stromal cells (BMSCs) from these mice revealed their differential expression of osteogenesis-related genes and miRNAs. The expression of miR-342, predicted and then proven to target the gene encoding collagen type Iα2 (COL1A2), was reduced in BMSCs derived from Irs-1-null mice. COL1A2 expression was then shown to be age dependent in osteoblasts and BMSCs derived from Irs-1smla/smla mice. After the induction of osteogenesis in BMSCs, miR-342 expression correlated inversely with that of Col1a2 Further, Col1a2-specific small interfering RNA (siRNA) reduced alkaline phosphatase (ALP) activity and inhibited BMSC differentiation into osteocyte-like cells, both in wild-type (WT) and Irs-1smla/smla mice. Conversely, in Irs-1smla/smla osteocytes overexpressing COL1A2, ALP-positive staining was stronger than in WT osteocytes. In summary, we uncovered a temporal regulation of BMSC differentiation/bone formation, controlled via Irs-1/miR-342 mediated regulation of Col1a2 expression.-Guo, Y., Tang, C.-Y., Man, X.-F., Tang, H.-N., Tang, J., Wang, F., Zhou, C.-L., Tan, S.-W., Feng, Y.-Z., Zhou, H.-D. Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen Iα2 expression via miR-342.


Assuntos
Células da Medula Óssea/citologia , Colágeno Tipo I/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Colágeno Tipo I/genética , Proteínas Substratos do Receptor de Insulina/genética , Camundongos Transgênicos , Osteoblastos/citologia , Transdução de Sinais/fisiologia , Fatores de Tempo
6.
Am J Transl Res ; 8(6): 2727-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27398155

RESUMO

Adipogenesis plays a key role in the regulation of whole-body energy homeostasis and is critically related to obesity. To overcome obesity and its associated disorders, it is necessary to elucidate the molecular mechanisms involved in adipogenesis. An adipogenesis-related miRNA array analysis demonstrated that miR-503 was differentially expressed before and after adipocyte differentiation; however, the exact role of miR-503 in adipocyte differentiation is unclear. Thus, the objective of this study was to further examine miR-503 in adipocyte differentiation. We found significantly decreased expression of miR-503 during adipocyte differentiation process. Using bioinformatic analysis, miR-503 was identified as a potential regulator of Bone Morphogenetic Protein Receptor 1a (BMPR1a). We then validated BMPR1a as the target of miR-503 using a dual luciferase assay, and found decreased miR-503 and increased BMPR1a expression during adipogenesis. Overexpression of miR-503 in preadipocytes repressed expression of BMPR1a and adipogenic-related factors such as CCAAT/enhancer binding protein a (C/EBPα), proliferator-activated receptor-gamma (PPARγ), and adipocyte protein 2 (AP2). In addition, miR-503 overexpression impaired the phosphoinositol-3 kinase (PI3K)/Akt pathway. Inhibition of miR-503 had the opposite effect. Additionally, BMPR1a interference by siRNA attenuated adipocyte differentiation and the accumulation of lipid droplets via downregulating the PI3K/Akt signaling pathway. Our study provides the first evidence of the role miR-503 plays in adipocyte differentiation by regulating BMPR1a via the PI3K/Akt pathway, which may become a novel target for obesity therapy.

7.
Endocr J ; 62(9): 835-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26211472

RESUMO

The objective of this study was to investigate the impact of neuropeptide Y (NPY) on preadipocyte proliferation and differentiation. Preadipocytes were incubated with a range of concentrations of NPY (10(-15)M - 10(-7)M). After NPY-induced differentiation, the extent of preadipocyte adipogenesis was evaluated. The expressions levels of related adipocyte markers such as PPARγ, C/EBPα and DLK-1 were examined by real-time PCR (RT-PCR) or western blot analysis. Furthermore, the mitogen-activated protein kinase (MAPK) signaling pathway proteins were also analyzed by western blot. Our results showed that low doses of NPY stimulated preadipocyte viability and proliferation, while high NPY doses inhibited cell viability. At high concentrations of NPY significantly promoted lipid accumulation and increased the size of lipid droplets. DLK-1 mRNA expression was inhibited, but the expression levels of PPARγ and C/EBPα were increased during differentiation with the presence of high concentration of NPY. High-dose NPY also suppressed the phosphorylation of the extracellular signal-regulated kinase (ERK) 1/2 protein. We conclude that NPY has a biphasic effect on preadipocyte proliferation. A high dose inhibits the proliferation of 3T3-L1 cell while promotes adipocyte differentiation, increasing lipid accumulation especially enlarged lipid droplets' size. NPY may lead to a better understanding for drug development to prevent hyperplastic obesity and hypertrophic obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipídeos/biossíntese , Neuropeptídeo Y/administração & dosagem , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Relação Dose-Resposta a Droga , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Int J Endocrinol ; 2013: 679763, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23573089

RESUMO

Wisp3 gene mutation was shown to cause spondyloepiphyseal dysplasia tarda with progressive arthropathy (SRDT-PA), but the underlying mechanism is not clear. To clarify this mechanism, we constructed the wild and mutated Wisp3 expression vectors and transfected into human chondrocytes lines C-20/A4; Wisp3 proteins subcellular localization, cell proliferation, cell apoptosis, and Wisp3-mediated gene expression were determined, and dynamic secretion of collagen in transfected chondrocytes was analyzed by (14)C-proline incorporation experiment. Mutated Wisp3 protein increased proliferation activity, decreased apoptosis of C-20/A4 cells, and aggregated abnormally in cytoplasm. Expression of collagen II was also downregulated in C-20/A4 cells transfected with mutated Wisp3. Wild type Wisp3 transfection increased intracellular collagen content and extracellular collagen secretion, but the mutated Wisp3 lost this function, and the peak phase of collagen secretion was delayed in mutated Wisp3 transfected cells. Thus abnormal protein distribution, cell proliferation, collagen synthesis, and secretion in Wisp3 mutated chondrocytes might contribute to the pathogenesis of SEDT-PA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA