Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 217, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779194

RESUMO

BACKGROUND: Major advances over the past decade in molecular ecology are providing access to soil fungal diversity in forest ecosystems worldwide, but the diverse functions and metabolic capabilities of this microbial community remain largely elusive. We conducted a field survey in montane old-growth broadleaved and conifer forests, to investigate the relationship between soil fungal diversity and functional genetic traits. To assess the extent to which variation in community composition was associated with dominant tree species (oak, spruce, and fir) and environmental variations in the old-growth forests in the Jade Dragon Snow Mountain in Yunnan Province, we applied rDNA metabarcoding. We also assessed fungal gene expression in soil using mRNA sequencing and specifically assessed the expression of genes related to organic matter decomposition and nutrient acquisition in ectomycorrhizal and saprotrophic fungi. RESULTS: Our taxonomic profiling revealed striking shifts in the composition of the saprotrophic and ectomycorrhizal guilds among the oak-, fir-, and spruce-dominated forests. The core fungal microbiome comprised only ~ 20% of the total OTUs across all soil samples, although the overlap between conifer-associated communities was substantial. In contrast, seasonality and soil layer explained only a small proportion of the variation in community structure. However, despite their highly variable taxonomic composition, fungal guilds exhibited remarkably similar functional traits for growth-related and core metabolic pathways across forest associations, suggesting ecological redundancy. However, we found that the expression profiles of genes related to polysaccharide and protein degradation and nutrient transport notably varied between and within the fungal guilds, suggesting niche adaptation. CONCLUSIONS: Overall, our metatranscriptomic analyses revealed the functional potential of soil fungal communities in montane old-growth forests, including a suite of specialized genes and taxa involved in organic matter decomposition. By linking genes to ecological traits, this study provides insights into fungal adaptation strategies to biotic and environmental factors, and sheds light on the importance of understanding functional gene expression patterns in predicting ecosystem functioning. Video Abstract.


Assuntos
Microbiota , Micobioma , Ecossistema , Micobioma/genética , Solo/química , Microbiologia do Solo , China , Florestas , Microbiota/genética , Fungos/genética
2.
Front Cell Infect Microbiol ; 13: 1133839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896189

RESUMO

At present, 25 species are accepted in Haploporus and are distributed in Asia, Europe, North America, South America, Australia, and Africa. In this study, two new species, Haploporus ecuadorensis from Ecuador and H. monomitica from China, are described and illustrated based on morphological examination and phylogenetic analyses. H. ecuadorensis is characterized by annual, resupinate basidiomata with pinkish buff to honey yellow hymenophore when dry, round to angular pores of 2-4 per mm, a dimitic hyphal structure with generative hyphae bearing clamp connections, hyphae at dissepiment edge usually with one or two simple septa, the presence of dendrohyphidia and cystidioles, and oblong to ellipsoid basidiospores measuring 14.9-17.9 × 6.9-8.8 µm. Haploporus monomitica differs from other Haploporus species in that it has a monomitic hyphal system and strongly dextrinoid basidiospores. The differences between the new species and morphologically similar and phylogenetically related species are discussed. In addition, an updated key to 27 species of Haploporus is provided.


Assuntos
Basidiomycota , Polyporales , Polyporales/genética , Filogenia , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Equador , Basidiomycota/genética , China , Esporos Fúngicos/genética
3.
Front Microbiol ; 14: 1129614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960288

RESUMO

Introduction: Soil salinity is a prevalent environmental stress in agricultural production. Microbial inoculants could effectively help plants to alleviate salt stress. However, there is little knowledge of the biocontrol strain Pseudomonas alcaliphila Ej2 mechanisms aiding rice plants to reduce the adverse effects caused by salt stress. Methods: We performed integrated field and greenhouse experiments, microbial community profiling, and rice proteomic analysis to systematically investigate the Ej2 mechanism of action. Results: The results displayed that biocontrol strain Ej2 increased shoot/root length and fresh/dry weight compared with control under salt stress. Meanwhile, strain Ej2 has the ability to control rice blast disease and promote rice growth. Furthermore, the microbial community analysis revealed that the alpha-diversity of Ej2-inoculated plants was higher than the control plants, expect the Shannon index of the bacterial microbiome and the Ej2-inoculated samples clustered and separated from the control samples based on beta-diversity analysis. Importantly, the enriched and specific OTUs after Ej2 inoculation at the genus level were Streptomyces, Pseudomonas, Flavobacterium, and Bacillus. Moreover, we observed that Ej2 inoculation influenced the rice proteomic profile, including metabolism, plant-pathogen interactions, and biosynthesis of unsaturated fatty acids. These results provide comprehensive evidence that Ej2 inoculation induced the rice endophytic microbiome and proteomic profiles to promote plant growth under salt stress. Discussion: Understanding the biocontrol strain effects on the endophytic microbiome and rice proteomics will help us better understand the complex interactions between plants and microorganisms under salt stress. Furthermore, unraveling the mechanisms underlying salt tolerance will help us more efficiently ameliorate saline soils.

4.
Front Microbiol ; 13: 916337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966686

RESUMO

Ectomycorrhizal (ECM) symbioses play an important role in tree biology and forest ecology. However, little is known on the composition of bacterial and fungal communities associated to ECM roots. In the present study, we surveyed the bacterial and fungal microbiome of ECM roots from stone oaks (Lithocarpus spp.) and Yunnan pines (Pinus yunnanensis) in the subtropical forests of the Ailao Mountains (Yunnan, China). The bacterial community was dominated by species pertaining to Rhizobiales and Acidobacteriales, whereas the fungal community was mainly composed of species belonging to the Russulales and Thelephorales. While the bacterial microbiome hosted by ECM roots from stone oaks and Yunnan pines was very similar, the mycobiome of these host trees was strikingly distinct. The microbial networks for bacterial and fungal communities showed a higher complexity in Lithocarpus ECM roots compared to Pinus ECM roots, but their modularity was higher in Pinus ECM roots. Seasonality also significantly influenced the fungal diversity and their co-occurrence network complexity. Our findings thus suggest that the community structure of fungi establishing and colonizing ECM roots can be influenced by the local soil/host tree environment and seasonality. These results expand our knowledge of the ECM root microbiome and its diversity in subtropical forest ecosystems.

5.
Front Microbiol ; 13: 906732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923406

RESUMO

The plant microbiome plays a fundamental role in plant growth and health. However, detailed information regarding the plant endophytic microbiome during the infection period of a pathogen is largely unknown. Here, we investigated the microbial community of healthy and diseased cotton plants and the root exudate profiles of susceptible and resistant cultivars utilizing high-throughput sequencing and metabolomics. The results showed that the pathogen infection reduced bacterial diversity and significantly affected the bacterial community composition. The microbiome assembly is shaped predominantly by cultivars. The endophytic microbiome of the infected plants showed greater complexity than the healthy plants in network analysis. The results displayed that a total of 76 compounds were significantly different in the two groups, with 18 compounds showing a higher relative abundance in the resistant cultivars and 58 compounds in the susceptible cultivars. Pathway enrichment analysis showed that pathways related to plant hormone signal transduction, biosynthesis of various secondary metabolites, and biosynthesis and metabolism of amino acids were prominently altered. We also demonstrate that plants inoculated with Pseudomonas sp. strains showed increased resistance to the cotton Verticillium wilt compared with the control plants in pot experiments. Overall, it showed that the pathogen infection affected the community composition, and healthy plants displayed an enriched beneficial microbiome to combat the plant disease. These findings significantly advance our understanding of the endophytic microbiome assembly under the pathogen infection and develop microbiome-based solutions for sustainable crop production systems.

6.
Front Microbiol ; 13: 908257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770159

RESUMO

Replacement of primary old-growth forests by secondary woodlands in threatened subtropical biomes drives important changes at the level of the overstory, understory and forest floor, but the impact on belowground microbial biodiversity is yet poorly documented. In the present study, we surveyed by metabarcoding sequencing, the diversity and composition of soil bacteria and fungi in the old-growth forest, dominated by stone oaks (Lithocarpus spp.) and in the secondary Yunnan pine woodland of an iconic site for biodiversity research, the Ailaoshan National Nature Reserve (Ailao Mountains, Yunnan province, China). We assessed the effect of forest replacement and other environmental factors, including soil horizons, soil physicochemical characteristics and seasonality (monsoon vs. dry seasons). We showed that tree composition and variation in soil properties were major drivers for both bacterial and fungal communities, with a significant influence from seasonality. Ectomycorrhizal Operational Taxonomic Units (OTUs) dominated the functional fungal guilds. Species richness and diversity of the bacterial and fungal communities were higher in the pine woodland compared to the primary Lithocarpus forest, although prominent OTUs were different. The slightly lower complexity of the microbiome in the primary forest stands likely resulted from environmental filtering under relatively stable conditions over centuries, when compared to the secondary pine woodlands. In the old-growth forest, we found a higher number of species, but that communities were homogeneously distributed, whereas in the pine woodlands, there is a slightly lower number of species present but the communities are heterogeneously distributed. The present surveys of the bacterial and fungal diversity will serve as references in future studies aiming to assess the impact of the climate change on soil microbial diversity in both old-growth forests and secondary woodlands in Ailaoshan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA