Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EBioMedicine ; 98: 104861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924707

RESUMO

BACKGROUND: Normothermic regional perfusion (NRP) and hypothermic-oxygenated-perfusion (HOPE), were both shown to improve outcomes after liver transplantation from donors after circulatory death (DCD). Comparative clinical and mechanistical studies are however lacking. METHODS: A rodent model of NRP and HOPE, both in the donor, was developed. Following asystolic donor warm ischemia time (DWIT), the abdominal compartment was perfused either with a donor-blood-based-perfusate at 37 °C (NRP) or with oxygenated Belzer-MPS at 10 °C (donor-HOPE) for 2 h. Livers were then procured and underwent 5 h static cold storage (CS), followed by transplantation. Un-perfused and HOPE-treated DCD-livers (after CS) and healthy livers (DBD) with direct implantation after NRP served as controls. Endpoints included the entire spectrum of ischemia-reperfusion-injury. FINDINGS: Healthy control livers (DBD) showed minimal signs of inflammation during 2 h NRP and achieved 100% posttransplant recipient survival. In contrast, DCD livers with 30 and 60 min DWIT suffered from greater mitochondrial injury and inflammation as measured by increased perfusate Lactate, FMN- and HMGB-1-levels with subsequent Toll-like-receptor activation during NRP. In contrast, donor-HOPE (instead of NRP) led to significantly less mitochondrial-complex-I-injury and inflammation. Results after donor-HOPE were comparable to ex-situ HOPE after CS. Most DCD-liver recipients survived when treated with one HOPE-technique (86%), compared to only 40% after NRP (p = 0.0053). Following a reduction of DWIT (15 min), DCD liver recipients achieved comparable survivals with NRP (80%). INTERPRETATION: High-risk DCD livers benefit more from HOPE-treatment, either immediately in the donor or after cold storage. Comparative prospective clinical studies are required to translate the results. FUNDING: Funding was provided by the Swiss National Science Foundation (grant no: 32003B-140776/1, 3200B-153012/1, 320030-189055/1, and 31IC30-166909) and supported by University Careggi (grant no 32003B-140776/1) and the OTT (grant No.: DRGT641/2019, cod.prog. 19CT03) and the Max Planck Society. Work in the A.G. laboratory was partially supported by the NIH R01NS112381 and R21NS125466 grants.


Assuntos
Transplante de Fígado , Animais , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Roedores , Estudos Prospectivos , Perfusão/métodos , Sobrevivência de Enxerto , Preservação de Órgãos/métodos , Fígado , Doadores de Tecidos , Inflamação
2.
Ann Surg ; 278(5): 669-675, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497663

RESUMO

OBJECTIVE: To develop a protocol for the defatting of steatotic liver grafts during long-term ex situ normothermic machine perfusion. BACKGROUND: Despite the alarming increase in donor organ shortage, the highly prevalent fatty liver grafts are often discarded due to the risk of primary nonfunction. Effective strategies preventing such outcomes are currently lacking. An exciting new avenue is the introduction of ex situ normothermic machine perfusion (NMP), enabling a liver to remain fully functional for up to 2 weeks and providing a unique window of opportunity for defatting before transplantation. METHODS: Over a 5-year period, 23 discarded liver grafts and 28 partial livers from our resection program were tested during ex situ normothermic machine perfusion. The steatosis degree was determined on serial biopsies by expert pathologists, and triglyceride contents were measured simultaneously. RESULTS: Of 51 liver grafts, 20 were steatotic, with up to 85% macrovesicular steatosis, and were perfused for up to 12 days. Ten livers displayed marked (5 of which almost complete) loss of fat, while the other 10 did not respond to long-term perfusion. Successful defatting was related to prolonged perfusion, automated glucose control, circadian nutrition, and L-carnitine/fenofibrate supplementation. Pseudopeliotic steatosis and the associated activation of Kupffer/stellate cells were unexpected processes that might contribute to defatting. Synthetic and metabolic functions remained preserved for most grafts until perfusion ended. CONCLUSION: Ex situ long-term perfusion effectively reduces steatosis while preserving organ viability and may in the future allow transplantation of primarily unusable high-risk grafts, significantly increasing the number of organs available for transplantation.


Assuntos
Fígado Gorduroso , Transplante de Fígado , Humanos , Preservação de Órgãos/métodos , Fígado/patologia , Transplante de Fígado/métodos , Perfusão/métodos
3.
Artif Organs ; 47(2): 317-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36106378

RESUMO

BACKGROUND: Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS: Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS: Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION: Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.


Assuntos
Hemólise , Transplante de Fígado , Humanos , Preservação de Órgãos , Fígado , Perfusão , Lactatos , Hemoglobinas
4.
Front Transplant ; 2: 1132673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38993877

RESUMO

Introduction: The gap between available donor grafts and patients on the waiting lists is constantly growing. This leads to an increased utilization of high-risk and therefore more vulnerable kidney grafts. The use of high-risk organs requires further optimization of machine preservation and assessment strategies before transplantation. Hypothermic machine perfusion (HMP) is the standard of care for kidneys originating from donation after circulatory death (DCD), whereas the evidence of HMP with additional oxygen (HOPE) is still very limited. Furthermore, an objective quality assessment of HMP-perfused kidneys is lacking. Recently, the release of mitochondria derived fragments, i.e., flavin mononucleotide (FMN) of complex I during machine liver perfusion was shown to be predictive for liver graft function before implantation. Therefore, the aim of this study was to evaluate, if FMN is useful also for assessment of kidney injury before use. Methods: A porcine perfusion model was used to investigate the feasibility of assessment of kidney grafts during hypothermic oxygenated perfusion (HOPE) with either 0, 30 or 60 minutes of warm ischemia. The model with warm ischemia times (WIT) of 30 min and 60 min, was used to mimic a clinically relevant scenario. A group with no warm ischemia time (0' WIT) served as control group. The groups underwent minimal static cold storage (SCS) of 2 h followed by 2 h of end-ischemic HOPE with repeated real-time FMN measurements. In a further step, these values were related to the release of damage-associated molecular patterns (DAMPs) and to the functionality of the respiratory chain, represented by the capacity of ATP production. Results: We demonstrate, first, feasibility of perfusate FMN measurements in perfused kidneys, and secondly its correlation with donor warm ischemia time. Accordingly, FMN measurement showed significantly higher release in the 60-minute WIT group (n = 4) compared to the 30-minute WIT (n = 4) and the control group (n = 4). FMN release correlated also with DAMP signaling, such as the release of 8-OHdG and HMGB1. Finally, ATP replenishment proved to be best in control kidneys, followed by kidneys with 30 min and then by kidneys with 60 min of WIT. Discussion: This study demonstrates the feasibility of FMN measurement in kidneys during HOPE. In addition, we show a correlation between FMN quantification and pre-existing kidney graft injury. Based on this, real-time FMN measurement during HOPE may be an objective assessment tool to accept high-risk kidneys for transplantation while minimizing post-transplant dysfunction, moving away from former "gut feeling" towards objective criteria in accepting marginal kidney grafts for transplantation. Graft evaluation based on these results may close the gap between available grafts and patients on the waiting lists by increasing utilization rates without significant impact for the recipients.

5.
Ann Surg ; 274(5): 836-842, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334640

RESUMO

OBJECTIVE: The aim of this study was to maintain long-term full function and viability of partial livers perfused ex situ for sufficient duration to enable ex situ treatment, repair, and regeneration. BACKGROUND: Organ shortage remains the single most important factor limiting the success of transplantation. Autotransplantation in patients with nonresectable liver tumors is rarely feasible due to insufficient tumor-free remnant tissue. This limitation could be solved by the availability of long-term preservation of partial livers that enables functional regeneration and subsequent transplantation. METHODS: Partial swine livers were perfused with autologous blood after being procured from healthy pigs following 70% in-vivo resection, leaving only the right lateral lobe. Partial human livers were recovered from patients undergoing anatomic right or left hepatectomies and perfused with a blood based perfusate together with various medical additives. Assessment of physiologic function during perfusion was based on markers of hepatocyte, cholangiocyte, vascular and immune compartments, as well as histology. RESULTS: Following the development phase with partial swine livers, 21 partial human livers (14 right and 7 left hemi-livers) were perfused, eventually reaching the targeted perfusion duration of 1 week with the final protocol. These partial livers disclosed a stable perfusion with normal hepatic function including bile production (5-10 mL/h), lactate clearance, and maintenance of energy exhibited by normal of adenosine triphosphate (ATP) and glycogen levels, and preserved liver architecture for up to 1 week. CONCLUSION: This pioneering research presents the inaugural evidence for long-term machine perfusion of partial livers and provides a pathway for innovative and relevant clinical applications to increase the availability of organs and provide novel approaches in hepatic oncology.


Assuntos
Hepatopatias/cirurgia , Regeneração Hepática/fisiologia , Transplante de Fígado/métodos , Fígado/fisiopatologia , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Modelos Animais de Doenças , Seguimentos , Humanos , Fígado/cirurgia , Hepatopatias/fisiopatologia , Estudos Retrospectivos , Suínos , Fatores de Tempo
6.
J Hepatol ; 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28870676

RESUMO

BACKGROUND & AIMS: Pretreatment of marginal organs by perfusion is a promising opportunity to make more organs available for transplantation. Protection of human donation after cardiac death (DCD) livers by a novel machine perfusion technique, hypothermic oxygenated perfusion (HOPE), was recently established. Herein, we tested whether HOPE is also useful for fatty liver grafts, using a rodent transplant model. METHODS: Rats were fed over three weeks with a special methionine-choline-deficient diet (MCDD) to induce severe hepatic macrosteatosis (≥60%). Afterwards, livers were transplanted with either minimal or 12h cold storage. Additional liver grafts were treated after 12h cold storage with 1h HOPE before transplantation. Graft injury after orthotopic liver transplantation (OLT) was assessed in terms of oxidative stress, damage-associated molecular patterns release, toll-like receptor-4 activation, cytokine release, endothelial activation, and the development of necrosis and fibrosis. RESULTS: Implantation of cold stored macrosteatotic liver grafts induced massive reperfusion injury after OLT, compared to controls (non-fatty livers). HOPE treatment after cold storage failed to change the degree of steatosis itself, but markedly decreased reperfusion injury after OLT, as detected by less oxidative stress, less nuclear injury, less Kupffer- and endothelial cell activation, as well as less fibrosis within one week after OLT. Protective effects were lost in the absence of oxygen in the HOPE perfusate. CONCLUSION: HOPE after cold storage of fatty livers prevents significant reperfusion injury and improves graft function, comparable to the effects of HOPE in DCD livers and DCD kidneys. HOPE treatment is easy and may become a universal concept to further expand the donor pool. LAY SUMMARY: An increasing number of donor livers contain fat. It is important to harness marginal livers, which may contain fat, as the stock of donor livers is limited. Hypothermic oxygenated perfusion (HOPE) prevents reperfusion injury and improves liver graft function. HOPE offers a simple and low-cost option for treating liver grafts in transplant centers, even after cold storage, instead of transporting machines to the place of procurement. HOPE could be used globally to expand the donor pool.

7.
Oncotarget ; 8(18): 30162-30174, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28415799

RESUMO

INTRODUCTION: In patients with infection and sepsis serum levels of Pancreatic Stone protein/regenerating protein I (PSP) are highly elevated. The origin of PSP during these conditions is presumably the pancreas, however, an intestinal origin cannot be excluded. Similarly, pancreatitis-associated protein (PAP) was identified in the pancreas. These proteins were also localized in intestinal organs. Here we aim to elucidate the bio-distribution of PSP and PAP in animal models of sepsis and in healthy humans. RESULTS: PSP and PAP responded to remote lesions in rats although the pancreatic response was much more pronounced than the intestinal. Tissue distribution of PSP demonstrated a 100-fold higher content in the pancreas compared to any other organ while PAP was most abundant in the small intestine. Both proteins responded to CLP or sham operation in the pancreas. PSP also increased in the intestine during CLP. The distribution of PSP and PAP in human tissue mirrored the distribution in the murine models. MATERIALS AND METHODS: Distribution of PSP and PAP was visualized by immunohistochemistry. Rats and mice underwent midline laparotomies followed by mobilization of tissue and incision of the pancreatic duct or duodenum. Standard cecum-ligation-puncture (CLP) procedures or sham laparotomies were performed. Human tissue extracts were analyzed for PSP and PAP. CONCLUSIONS: The pancreas reacts to remote lesions and septic insults in mice and rats with increased PSP synthesis, while PAP is selectively responsive to septic events. Furthermore, our results suggest that serum PSP in septic patients is predominantly derived through an acute phase response of the pancreas.


Assuntos
Litostatina/metabolismo , Pâncreas/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Estresse Fisiológico , Animais , Biomarcadores , Humanos , Masculino , Camundongos , Transporte Proteico , Ratos , Sepse/sangue , Sepse/etiologia , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA