RESUMO
In this study, some benzofused tricyclic heterocyclic derivatives have been tested as possible new catalysts for anode hydrazine electrooxidation in a direct hydrazine fuel cell (DHFC). Electrochemical studies were carried out in solution media containing 1 M KOH and 1 M KOH + 0.5 M N2H4 using electrochemical techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). The CV results obtained showed that 5 catalysts promoted the generation of the best current (38.32 mA/cm2), and EIS results confirmed that an electrode modified with the same derivative presented the lowest charge transfer resistance. All these results proved that 5 organic-based catalysts can be used as an anode-efficient catalyst in hydrazine fuel cells.
RESUMO
Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.
RESUMO
The low-fouling propensity of commercially available polyethersulfone (PES) membranes was studied after modification of the membrane surface via coating with polymerizable bicontinuous microemulsion (PBM) materials. The PBM coating was polymerized within 1 min using ultraviolet (UV) light exposure. It was detected on the PES membrane surface via attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The PBM coating led to an average 10% increase in the hydrophilicity of the PES membrane surface and an increase in total organic content (TOC) removal by more than 15%. Flux-step tests were conducted with model foulant comprising 100 mg L-1 humic acid (HA) solution to detect the onset of critical fouling, characterized by a rapid and substantial increase in TMP, and to compare the fouling propensity of commercially available PES membranes with PBM-coated membranes. The critical flux was found to be about 40% higher for PBM spray-coated membrane and 20% lower for PBM casting-coated membrane than the commercial PES membrane. This demonstrates the performance advantages of the thin PBM layer spray-coated on PES membrane compared to the thick casting-coated PBM layer. The study showcases the potential of PBM spray-coated membranes over commercial PES membranes for use in membrane bioreactors (MBR) for wastewater treatment systems with reduced maintenance over longer operation periods.
RESUMO
2-Propargyl-1,3-dicarbonyl compounds have been carbonylated under oxidative conditions and with the catalysis of the PdI2/KI catalytic system to selectively afford previously unreported 2-(4-acylfuran-2-yl)acetamides in fair to good yields (54-81%) over 19 examples. The process takes place under relatively mild conditions and occurs via a mechanistic pathway involving Csp-H activation by oxidative monoamincarbonylation of the terminal triple bond of the substrates with formation of 2-ynamide intermediates, followed by 5-exo-dig O-cyclization (via intramolecular conjugate addition of the in situ formed enolate to the 2-ynamide moiety) and aromative isomerization.
RESUMO
A palladium-catalyzed carbonylative approach to benzothiophene-3-carboxylic esters, starting from simple and readily available building blocks [2-(methylthio)phenylacetylenes, CO, an alcohol, and O2 (from air)], is reported. The process is catalyzed by the simple PdI2/KI catalytic system to give the desired products in fair to high yields (57-83%). Interestingly, the reaction also works nicely in the ionic liquid BmimBF4 as the solvent, with the possibility to recycle the catalytic system several times without appreciable loss of activity.
RESUMO
Cancer-targeted drug delivery systems (DDS) based on carbon nanostructures have shown great promise in cancer therapy due to their ability to selectively recognize specific receptors overexpressed in cancer cells. In this paper, we have explored a green route to synthesize nanobiochar (NBC) endowed with graphene structure from the hydrothermal carbonization (HTC) of orange peels and evaluated the suitability of this nanomaterial as a nanoplatform for cancer therapy. In order to compare the cancer-targeting ability of different widely used targeting ligands (TL), we have conjugated NBC with biotin, riboflavin, folic acid and hyaluronic acid and have tested, in vitro, their biocompatibility and uptake ability towards a human alveolar cancer cell line (A549 cells). The nanosystems which showed the best biological performances-namely, the biotin- and riboflavin- conjugated systems-have been loaded with the poorly water-soluble drug DHF (5,5-dimethyl-6a-phenyl-3-(trimethylsilyl)-6,6a-dihydrofuro[3,2-b]furan-2(5H)-one) and tested for their anticancer activity. The in vitro biological tests demonstrated the ability of both systems to internalize the drug in A549 cells. In particular, the biotin-functionalized NBC caused cell death percentages to more than double with respect to the drug alone. The reported results also highlight the positive effect of the presence of oxygen-containing functional groups, present on the NBC surface, to improve the water dispersion stability of the DDS and thus make the approach of using this nanomaterial as nanocarrier for poorly water-soluble drugs effective.
RESUMO
Biodegradation is among the most common issues affecting Cultural Heritage stone materials in outdoor environments. In recent years, the application of chemical agents with biocidal activity has been the most usual practice when dealing with biofilm removal. In outdoor environments, the use of these biocides is not effective enough, since the materials are constantly exposed to environmental agents and atmospheric pollutants. Thus, it becomes necessary to protect the surface of Cultural Heritage works with antimicrobial coatings to either prevent or at least limit future colonization. In this study, innovative biocides-both natural and synthetic-were applied on a Roman mosaic located in the Archaeological Park of Ostia Antica to compare their effectiveness in removing the biological degradation affecting it. In addition, an antimicrobial coating called "SI-QUAT" was applied and analyzed in situ. SI-QUAT has recently entered the market for its prevention activity against biocolonization. The biocidal activity of these products was tested and monitored using different analytical portable instruments, such as the multispectral system, the spectrocolorimeter, and the bioluminometer. The analyses showed that promising results can be obtained using the combination of the biocide and the protective effect of Preventol® RI50 and SI-QUAT.
RESUMO
Biodeterioration is an increasingly widespread process of degradation in the context of the conservation of cultural heritage, which involves a combination of physical and chemical damages together with an aesthetic alteration of materials. For biological damage on monuments caused by pathogens, macro- and microorganisms, chemical treatments are generally used, most of the time dangerous for the environment and for the operator. In this context, new eco-friendly products represent necessary tools for the treatment of biologically deteriorated stone surfaces and represent a new challenge in the field of restoration and conservation of materials of cultural interest. A relatively new class of unconventional green solvents are deep eutectic solvents (DESs), which have peculiar chemical-physical characteristics such as being non-toxic, ecological, biodegradable, non-flammable, and stable in the presence of water. Furthermore, many DESs known in the literature have also been shown to have a biocidal action. All these characteristics make DESs very advantageous and safe, and they could be used as biocidal agents for the treatment of biodegraded surfaces of cultural heritage, being non-toxic for the environment and for the operator. So far, they are used in various fields, but they still represent a novel frontier in the cultural heritage sector. The present research aims at testing five different DESs for the first time in cultural heritage. In particular, DESs are applied to a mosaic located in the Ostia Antica Archaeological Park (Rome), and their efficiency is compared with a biocide product currently used in the restoration field, namely, Preventol RI50, through luminescence, bio-luminometry, and spectrocolorimetry analysis. The preliminary results achieved show the different behaviors of each DESs, highlighting the possibility of employing them in the field of cultural heritage. Further studies have been planned, some of which are already underway, to investigate the properties of DESs and indicate any improvements to make them more effective, both as solvents and as biocides, and easy to apply to various types of materials. The results obtained from this first study are very promising for the use of DES as a new green strategy for cleaning and conservation treatments of materials in the field of cultural heritage.
RESUMO
Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However, despite their outstanding mechanical and biological properties, implant failure mainly due to post-operative infection still remains a significant concern. The possibility to develop inherent antibacterial medical devices was here investigated by covalently inserting bioactive ammonium salts onto the surface of titanium metal substrates. Titanium discs have been functionalized with quaternary ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this study highlight the importance of chemical functionalization in addressing the antimicrobial activity of metal surfaces and could open new perspectives in the development of inherent antibacterial medical devices.
RESUMO
In this short review, we highlight the advancements in the field of palladium-catalyzed carbon dioxide utilization for the synthesis of high value added organic molecules. The review is structured on the basis of the kind of substrate undergoing the Pd-catalyzed carboxylation process. Accordingly, after the introductory section, the main sections of the review will illustrate Pd-catalyzed carboxylation of olefinic substrates, acetylenic substrates, and other substrates (aryl halides and triflates).
RESUMO
The first example of palladium-catalysed oxidative carbonylation of unprotected α-amino amides to hydantoins is described here. The selective synthesis of the target compounds was achieved under mild conditions (1 atm of CO), without ligands and bases. The catalytic system overrode the common reaction pathway that usually leads instead to the formation of symmetrical ureas.
RESUMO
Six recently synthesized alkyl (Z)-2-(2-oxopyrrolidin-3-ylidene)acetates were evaluated for their potential as cytotoxic and anticancer agents. All compounds were tested in the ERα positive MCF-7, triple negative MDA-MB-231, and Her2+ SKBR-3 breast cancer cell lines. The most lipophilic derivatives, bearing the 4-isopropylphenyl (2) or 4-tert-butylphenyl (3) group at the γ-lactam nitrogen, proved to be cytotoxic against all the cancer cell lines tested (IC50 values ranging from 18 to 63 µM), exerting their greatest activity in SKBR-3 cells, with IC50 values of 33 and 18 µM, respectively. Biological studies showed that the cytotoxic effects of 2 and 3 are accompanied by apoptotic death in breast cancer cells, and both compounds showed no significant toxicity on healthy cells (e.g., MCF-10A) and red blood cells. An in-depth mechanistic study based on molecular biology, immunoblotting analysis and in silico docking calculations suggested that α,ß-unsaturated γ-lactam derivatives could interfere with the functioning of PI3K and PDK-1, two key enzymes in the PI3K/AKT signaling pathway, whose overactivation is related to the regulation of cell growth and survival in several malignancies.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Lactamas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Produtos Biológicos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lactamas/química , Estrutura Molecular , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
Membrane modification is becoming ever more relevant for mitigating fouling phenomena within wastewater treatment applications. Past research included a novel low-fouling coating using polymerizable bicontinuous microemulsion (PBM) induced by UV-LED polymerization. This additional cover layer deteriorated the filtration capacity significantly, potentially due to the observed high pore intrusion of the liquid PBM prior to the casting process. Therefore, this work addressed an innovative experimental protocol for controlling the viscosity of polymerizable bicontinuous microemulsions (PBM) before casting on commercial ultrafiltration (UF) membranes. Prior to the coating procedure, the PBM viscosity modulation was carried out by controlled radical polymerization (CRP). The regulation was conducted by introducing the radical inhibitor 2,2,6,6-tetramethylpiperidine 1-oxyl after a certain time (CRP time). The ensuing controlled radical polymerized PBM (CRP-PBM) showed a higher viscosity than the original unpolymerized PBM, as confirmed by rheological measurements. Nevertheless, the resulting CRP-PBM-cast membranes had a lower permeability in water filtration experiments despite a higher viscosity and potentially lower pore intrusion. This result is due to different polymeric structures of the differently polymerized PBM, as confirmed by solid-state nuclear magnetic resonance (NMR) investigations. The findings can be useful for future developments in the membrane science field for production of specific membrane-coating layers for diverse applications.
RESUMO
Lake Victoria is a shared water resource between Kenya, Uganda, and Tanzania, which is the second largest freshwater lake in the world. It has long since suffered from the consequences of overexploitation of its resources, mainly fish stocks, and increasingly high pollution. The closure of 58% of the fish processing plants (FPPs) is attributed to the declining fish stocks due to overfishing and pollution in particular. The installation and operation of a pilot membrane bioreactor (MBR) in Kisumu, Kenya, adopts an integrated approach by providing an integral, sustainable, cost-effective, and robust solution for water sanitation, which also meets the demand for clean water in the fish processing industry, aquaculture, and irrigation. The innovative system comprises a pilot MBR coupled with a recirculation aquaculture system (RAS). The RAS is able to recirculate 90% to 95% of its water volume; only the water loss through evaporation and drum filter back flushing has to be replaced. To compensate for this water deficit, the MBR treats domestic wastewater for further reuse. Additionally, excess purified water is used for irrigating a variety of local vegetables and could also be used in FPPs. The pilot-scale MBR plant with around 6 m2 submerged commercial polyethersulfone (PES) membranes provides treated water in basic agreement with Food and Agriculture Organization (FAO) standards for irrigation and aquaculture, showing no adverse effects on tilapia fingerlings production. A novel membrane module with a low-fouling coating is operating stably but has not yet shown improved performance compared to the commercial one. Integr Environ Assess Manag 2020;16:942-954. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Conservação dos Recursos Naturais , Pesqueiros , Lagos , Membranas Artificiais , Uganda , Eliminação de Resíduos LíquidosRESUMO
In this contribution, we report novel palladium-catalyzed carbonylative cascade approaches to highly functionalized polyheterocyclic structures. The Pd-catalyzed carbonylative process involves the regioselective insertion of one to three CO molecules and the sequential ordered formation of up to eight new bonds (one C-O, two C-C, five C-N). The exclusive formation of six-membered heterocycles is elucidated by detailed modeling studies.
RESUMO
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use.
RESUMO
BACKGROUND: In recent decades, the use of synthetic herbicides has been increasing, mainly in emerging countries. However, their intensive and indiscriminate application is a major cause of environmental pollution and human health injury. Therefore, there is an increasing need to develop new herbicides with safer toxicological and environmental profiles. A promising strategy is to synthesize new molecules containing the core of natural products as a template for the production of 'bio-inspired' or 'natural-like' herbicides. RESULTS: The potential herbicidal activity of some benzofuran-2-acetic esters was assessed in vitro on Arabidopsis thaliana, a model species. All five molecules (M1-M5) showed significant phytotoxic activity, reducing both shoot and root system at low concentrations. In particular, methyl 2-(5-methoxybenzofuran-2-yl)hexanoate (M3) exhibited the highest phytotoxicity displayed against two crops and weeds, monocots (Zea mays L. and E. crus-galli) and dicots (Lactuca sativa L. and Amaranthus retroflexus L.). The M3 activity was also compared with glyphosate, a common herbicide, showing a lower but similar activity. Moreover, the results evidenced that M3 was more effective in post-emergency. CONCLUSION: Readily synthesizable benzofuran-2-acetic esters possessing the benzofuran ring as 'bio-inspired' core, show significant herbicidal activity making them very efficient even at low concentrations. They can be sprayed in liquid form, and the addition of adjuvants can improve penetration through the leaf cuticle. These results confirm the importance of these molecules as models for the development of new natural-like herbicides. © 2019 Society of Chemical Industry.
Assuntos
Ésteres/química , Amaranthus , Benzofuranos , Herbicidas , Plantas DaninhasRESUMO
New polymeric films with antibacterial activity have been prepared, by simple UV-induced copolymerization of readily available ω-(acryloyloxy)-N,N,N-triethylalcan-1-aminium bromides (or acryloyloxyalkyltriethylammonium bromides, AATEABs) with commercially available 2-hydroethyl methacrylate (HEMA), at different relative amounts. In particular, the antibacterial activity of polymeric films derived from 11-(acryloyloxy)-N,N,N-triethylundecan-1-aminium bromide (or acryloyloxyundecyltriethylammonium bromide, AUTEAB; bearing a C-11 alkyl chain linker between the acrylate polymerization function and the quaternary ammonium moiety) and 12-(acryloyloxy)-N,N,N-triethyldodecan-1-aminium bromide (or acryloyldodecyltriethylammonium bromide, ADTEB, bearing a C-12 alkyl chain linker) has been assessed against Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus cells. The results obtained have shown a clear concentration-dependent activity against both bacterial strains, the films obtained from homopolymerization of pure AUTEAB and ADTEAB being the most effective. Moreover, ADTEAB-based films showed a higher antibacterial activity with respect to the AUTEAB-based ones. Interestingly, however, both types of films presented a significant activity not only toward Gram-positive S. aureus, but also toward Gram-negative E. Coli cells.
Assuntos
Antibacterianos/química , Biopolímeros/química , Metacrilatos/química , Polimerização/efeitos da radiação , Compostos de Amônio Quaternário/química , Raios Ultravioleta , Antibacterianos/farmacologia , Biopolímeros/farmacologia , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
A catalytic carbonylative double cyclization method for the synthesis of furo[3,4- b]benzofuran-1(3 H)-ones is reported. It is based on the reaction between readily available 2-(3-hydroxy-1-yn-1-yl)phenols, CO, and oxygen carried out in the presence of catalytic amounts of PdI2 (1 mol %) in conjunction with KI (20 mol %) and 2 equiv of diisopropylethylamine at 80 °C for 24 h under 30 atm of a 1:4 mixture of CO-air. Interestingly, the process was not selective when carried out in classical organic non-nucleophilic solvents (such as MeCN or DME), leading to a mixture of the benzofurofuranone derivative and the benzofuran ensuing from simple cycloisomerization, whereas it turned out chemoselective toward the formation of the double cyclization compound in BmimBF4 as the reaction medium. Moreover, the ionic liquid solvent containing the catalyst could be easily recycled several times without appreciable loss of activity.
RESUMO
The first organo-catalyzed synthesis of imidazolidin-2-ones and imidazol-2-ones via intramolecular hydroamidation of propargylic ureas is reported. The phosphazene base BEMP turned out to be the most active organo-catalyst compared with guanidine and amidine bases. Excellent chemo- and regioselectivities to five-membered cyclic ureas have been achieved under ambient conditions, with a wide substrate scope and exceptionally short reaction times (down to 1 min). A base-mediated isomerization step to an allenamide intermediate is the most feasible reaction pathway to give imidazol-2-ones, as suggested by DFT studies.