Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mater Horiz ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953680

RESUMO

Anisotropy in mechanical, optical and thermal sensors in a spatial direction has many applications in health care, robotics, aerospace, and tissue engineering. In particular, wearable and implantable sensors respond to stretching and bending strains that probe mechanical energy and track physiological signals. Hence, the development of anisotropic pressure sensors with true piezoelectric (PE) signals is of utmost importance to achieve efficient devices. Herein, a simple and efficient method is developed for high longitudinal and transverse responses, with an approach to isolating a true piezoelectric signal. The electrospun (ES) polarity of oriented dipoles inside flexible fibers gives rise to a high longitudinal/transverse PE response of both lateral and transverse strains. Nanofibers of poly(vinylidene-chlorotrifluoroethylene) copolymers contain poled dipoles, up to 86%, that promote an enhanced PE coefficient of 42 pm V-1 in the case of negative polarity-based electrospinning. It is 40% higher in composition than the commonly adopted positive polarity-biased electrospinning process. We demonstrated the advantage of such a high PE coefficient by the enhanced sensitivity of the longitudinal (VLs = 0.3 V kPa-1, ILs = 0.07 µA kPa-1) as well as transverse (VTs = 1.0 V kPa-1, ITs = 0.8 µA kPa-1) PE response. To counter the ambiguity of high transverse response as compared to longitudinal in electrospun fiber-based devices, a facile method is proposed to isolate the ferroelectret, triboelectric and piezoelectric signals in a fiber-based hybrid device with their independent charge generation mechanisms.

2.
Nano Lett ; 24(26): 7861-7867, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38753952

RESUMO

Water-processable hybrid piezo- and thermo-electric materials have an increasing range of applications. We use the nanoconfinement effect of ferroelectric discrete molecular complex [Cu(l-phe)(bpy)(H2O)]PF6·H2O (1) in a nonpolar polymer 1D-nanofiber to envision the high-performance flexible hybrid piezo- and thermo-electric nanogenerator (TEG). The 1D-nanoconfined crystallization of 1 enhances piezoelectric throughput with a high degree of mechano-sensitivity, i.e., 710 mV/N up to 3 N of applied force with 10,000 cycles of unaffected mechanical endurance. Thermoelectric properties analysis shows a noticeable improvement in Seebeck coefficient (∼4 fold) and power factor (∼6 fold) as compared to its film counterpart, which is attributed to the enhanced density of states near the Fermi edges as evidenced by ultraviolet photoelectric spectroscopy and density functional based theoretical calculations. We report an aqueous processable hybrid TEG that provides an impressive magnitude of Seebeck coefficient (∼793 µV/K) and power factor (∼35 mWm-1K-2) in comparison to a similar class of materials.

3.
Langmuir ; 40(16): 8400-8408, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598711

RESUMO

Ferroelectric switching and retention performance of poly(vinylidene fluoride) (PVDF) thin films improve by the incorporation of unmodified smectite montmorillonite (MMT) clay nanodielectric. In the present study, an intercalated PVDF (clay/PVDF) thin film with edge-on ß-crystallite is fabricated via a heat-controlled spin coating (HCSC) technique. This provides an efficient and simple way to fabricate the edge-on oriented crystallite lamellae with an electroactive ß-phase, facilitating nanoscale ferroelectric switching at a lower voltage compared to the face-on orientation. Here, we demonstrate the polarization retention for periods longer than 20 days (∼480 h, i.e., 1.8 × 106 s), with no degradation in switched nanoscale domains. In addition, by maintaining the relatively high dielectric constant, the incorporation of nanoclay effectively lowers the leakage current by 102 factors. The obtained memory window in the edge-on orientation is 7 V, approximately twice the memory window obtained in the face-on orientation. In short, our findings provide a simple and promising route to fabricate edge-on oriented PVDF thin films, with ultralong retention, high dielectric constant, and improved leakage current.

4.
Langmuir ; 40(17): 8897-8910, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626396

RESUMO

MXene-inspired two-dimensional (2D) materials like Ti3C2Tx are widely known for their versatile properties, including surface plasmon, higher electrical conductivity, exceptional in-plane tensile strength, EMI shielding, and IR thermal properties. The MXene nanosheets coupled poly(vinylidene fluoride) (PVDF) nanofibers with d33 ∼-26 pm V-1 are able to capture the smaller thermal fluctuation due to a superior pyroelectric coefficient of ∼130 nC m-2 K-1 with an improved (∼7 times with respect to neat PVDF nanofibers) pyroelectric current figure of merit (FOMi). The significant enhancement of the pyroelectric response is attributed to the confinement effect of 2D MXene (Ti3C2Tx) nanosheets within PVDF nanofibers, as evidenced from polarized Fourier transform infrared (FTIR) spectroscopy and scanning probe microscopy (SPM). In subsequent studies, the practical applications of self-powered pyroelectric sensors of MXene-PVDF have been demonstrated. The fabricated flexible, hydrophobic pyroelectric sensor could be utilized as an excellent pyroelectric breathing sensor, a proximity sensor, and an IR data transmission receiver. Further, supervised machine learning algorithms are proposed to distinguish different types of breathing signals with ∼98% accuracy for healthcare monitoring purposes.

5.
ACS Nano ; 18(18): 11964-11977, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656962

RESUMO

In view of the depletion of natural energy resources, harvesting energy from waste is a revolution to simultaneously capture, unite, and recycle various types of waste energies in flexible devices. Thus, in this work, a spin-charge-regulated pyro-magneto-electric nanogenerator is devised at a well-known ferroelectric P(VDF-TrFE) copolymer. It promptly stores thermal-magnetic energies in a "capacitor" that generates electricity at room temperature. The ferroelectric domains are regulated to slip at the interfaces (also twins) of duly promoting polarization and other properties. An excellent pyroelectric coefficient p ∼ 615 nC·m-2·K-1 is obtained, with duly enhanced stimuli of a thermal sensitivity ∼1.05 V·K-1, a magnetoelectric coefficient αme ∼8.8 mV·cm-1·Oe-1 at 180 Hz (resonance frequency), and a magnetosensitivity ∼473 V/T. It is noteworthy that a strategy of further improving p (up to 41.2 µC·m-2·K-1) and αme (up to 23.6 mV·cm-1·Oe-1) is realized in the electrically poled dipoles. In a model hybrid structure, the spins lead to switch up the electric dipoles parallel at the polymer chains in a cohesive charged layer. It is an innovative approach for efficiently scavenging waste energies from electric vehicles, homes, and industries, where abundant thermal and magnetic energies are accessible. This sustainable strategy could be useful in next-generation self-powered electronics.

6.
Biomater Sci ; 12(7): 1801-1821, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407241

RESUMO

The degeneration of neurons due to the accumulation of misfolded amyloid aggregates in the central nervous system (CNS) is a fundamental neuropathology of Alzheimer's disease (AD). It is believed that dislodging/clearing these amyloid aggregates from the neuronal tissues could lead to a potential cure for AD. In the present work, we explored biocompatible polydopamine-coated piezoelectric polyvinylidene fluoride (DPVDF) nanospheres as acoustic stimulus-triggered anti-fibrillating and anti-amyloid agents. The nanospheres were tested against two model amyloidogenic peptides, including the reductionist model-based amyloidogenic dipeptide, diphenylalanine, and the amyloid polypeptide, amyloid beta (Aß42). Our results revealed that DPVDF nanospheres could effectively disassemble the model peptide-derived amyloid fibrils under suitable acoustic stimulation. In vitro studies also showed that the stimulus activated DPVDF nanospheres could efficiently alleviate the neurotoxicity of FF fibrils as exemplified in neuroblastoma, SHSY5Y, cells. Studies carried out in animal models further validated that the nanospheres could dislodge amyloid aggregates in vivo and also help the animals regain their cognitive behavior. Thus, these acoustic stimuli-activated nanospheres could serve as a novel class of disease-modifying nanomaterials for non-invasive electro-chemotherapy of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Nanosferas , Animais , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Amiloide , Modelos Animais de Doenças
7.
Mater Horiz ; 11(2): 454-459, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37961867

RESUMO

The mechanical/piezoelectric and/or thermal/pyroelectric energy harvesting efficiency is observed to be extremely good in multi-component ferroelectric inorganic oxides in their single-crystal form rather than in their polycrystalline counterparts (pellets and thick/thin films). However, growing such multi-component single crystals is a challenging and cost-intensive process besides the difficulty in tuning their long-range ferroic ordering and the involvement of toxic heavy elements. Instead, discrete inorganic metal complexes can be potential alternatives for which one can overcome these caveats by an appropriate design strategy. Herein, we report a biocompatible and an above room temperature (Tc > 380 K) molecular ferroelectric [Cu2(L-phe)2(bpy)2(H2O)](ClO4)2·2H2O single crystal (1) with profound anisotropic piezo- and pyro-electric responses along different unit cell axes. Energy harvesting data at room temperature reveal that the highest possibility of scavenging mechanical energy (∼30 µW m-2) is preferentially along the b-axis. This is attributed to the large spontaneous polarization (Ps = 2.5 µC cm-2) and piezoelectric coefficient (d33 = 23.5 pm V-1) observed along the b-axis, compared to those along the other two axes. The highest output voltage (7.4 V cm-2) and pyroelectric coefficient (29 µC m-2 K-1) obtained for the single-crystal device are impressively higher than those of most of the reported materials. Such a molecular anisotropic single-crystal piezo-/pyro-electric nanogenerator (SC-PENG) with excellent mechanical and thermal energy harvesting competence is reported for the first time.

8.
Phys Chem Chem Phys ; 25(38): 25925-25941, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37727027

RESUMO

This perspective article emphasizes the significant role of reactive oxygen species (ROS) in in vivo remedial therapy of various diseases and complications, capitalizing on their potential reactivity. Among the various influencers, herein, piezoelectric materials driven ROS generation activity is primarily considered. Intrinsic non-centrosymmetry of piezoelectric materials makes them suitable for distinct dipole formation in the presence of external mechanical stimuli. Such characteristics prompt the positioning of opposite charged carriers to execute associated redox transformations that effectively participate to generate ROS in the aqueous media of the cell cytoplasm, organelles and nucleus. The immense reactivity of piezoelectric material driven ROS is fostered to terminate cellular toxicity or curtail tumor cell growth, due to their higher specificity. This perspective considers the conjugated performance of piezoelectric materials and ultrasound which can remotely generate electrical charges that promote ROS production for therapeutic application. In particular, a substantial synopsis is provided for the remedial activity of numerous piezocatalytic materials in tumor cell apoptosis, antibacterial treatment, dental care and neurological disorders. Subsequently, the report precisely demonstrates the methods involving various spectrophotometric approaches for the analysis of the ROS. Finally, the key challenges of piezoelectric material-based therapy are discussed and systematic future progress is outlined.


Assuntos
Eletricidade , Organelas , Espécies Reativas de Oxigênio , Citoplasma , Oxirredução
9.
Langmuir ; 39(30): 10511-10520, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458707

RESUMO

Organic nonvolatile memory with low power consumption is a critical research demand for next-generation memory applications. Ferroelectric switching characteristics of poly(vinylidene fluoride) (PVDF) thin films modified with a trace amount of hydrated Cu salt (CuCl2·2H2O) are explored in the present study. Herein, a Cu salt-mediated PVDF (Cu/PVDF) thin film with preferential edge-on ß-crystallites is fabricated through the orientation-controlled spin coating (OCSC) technique. This work proposes a convenient and effective approach to produce edge-on-oriented electroactive PVDF thin films with a high degree of polar ß-phase, so as to realize the favorable switching under low operating voltages. Herein, chemically modified PVDF is anticipated to form a complex intermediate, which attains its stability by undergoing favorable hydrogen bonding that reorients the C-C structure of PVDF to obtain the ß-conformation. Such information is verified by X-ray photoelectron spectroscopy (XPS). Grazing incidence Fourier transform infrared (GI-FTIR) spectroscopy revealed that the Cu salt incorporated into the PVDF matrix favored the formation of the electroactive ß-phase with edge-on crystallite lamellae. Consequently, the Cu/PVDF thin film demonstrates a good contrast between electric field-assisted written and erased data bits in the piezoresponse force microscopy (PFM) phase image. Furthermore, to obtain the ferroelectric memory window, a metal-ferroelectric-insulator-semiconductor (MFIS) diode with Cu/PVDF as a ferroelectric layer has been fabricated. The capacitance-voltage (C-V) characteristic of the MFIS diode exhibits a memory window of 12 V with a long-term retention behavior (∼longer than 7 days). In a nutshell, we tried to represent a clear understanding of the interfacial interactions of the Cu salt with PVDF, which favor the edge-on formation that results in the promising low-voltage ferroelectric switching and excellent retention response, where any additional electrical poling and/or external stretching is completely possible to be ruled out, thus offering a new prospect for the evolution of devices with long-lasting nonvolatile memories.

10.
J Phys Condens Matter ; 35(41)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37402382

RESUMO

Two-dimensional materials are emerging as promising dielectric materials and have enormous possibilities in wearable micro and nanoelectronics, sensor, and detectors. The theoretical calculation is performed to investigate the pyroelectric coefficient and pyroelectric figure of merit (FOM) of Janus CrSeBr monolayer. Quasi-harmonic approximation (QHA) is used to calculate primary (p1) and secondary (p2) pyroelectric coefficients. Spontaneous polarization is calculated for different temperatures using QHA. Pyroelectric coefficient (1.21 µC m-2 K at 300 K) is obtained for CrSeBr monolayer, which is∼5times higher compared to MoSSe monolayer. A high FOM is found for CrSeBr monolayer(Fv=0.035 m2 C-1),(Fi=1.97 pm V-1). High FOM for voltage responsivity of CrSeBr monolayer could be beneficial for several commercial applications.

11.
Biomater Sci ; 11(10): 3469-3485, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36961503

RESUMO

Bio-piezoelectric materials are endowed with characteristic features such as non-invasiveness, small energy attenuation and deep tissue penetrability. Thus, they have the ability to serve as both diagnostic and therapeutic modalities for targeting and treating various dreaded disorders scourging mankind. Herein, piezoelectric nanotubes derived from a modified amino acid-containing dipeptide, phenylalanine-αß-dehydrophenylalanine (Phe-ΔPhe; FΔF), possessing acoustic stimulation-triggered reactive oxygen species (ROS) generating ability, were employed and projected for achieving a piezo-active response enabled anti-cancer effect in glioma cells. A model anti-cancer drug doxorubicin (Dox) was also loaded into the nanotubes and the combined system depicted enhanced ROS production and cell killing under an acoustically developed piezo-catalytic environment. Cellular level assessment studies demonstrated that the dipeptide based piezoelectric nanotubes could lead to an increase in the cellular Ca2+ ion concentration, further inducing ROS-triggered cytotoxicity accompanied by high therapeutic efficacy in C6 glioma cells. Overall, our structures have the uniqueness of serving as acoustic stimulus-driven, wireless, and non-invasive electro-chemotherapeutic agents for enabling heightened cancer cell killing and may complement other chemotherapeutic modalities for treating the disease.


Assuntos
Eletroquimioterapia , Glioma , Nanotubos , Humanos , Espécies Reativas de Oxigênio , Glioma/tratamento farmacológico , Doxorrubicina/química , Linhagem Celular Tumoral , Fenilalanina/química , Dipeptídeos/farmacologia
12.
Small ; 19(14): e2204637, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36642859

RESUMO

Interest in the development of new generation injectable bone cements having appropriate mechanical properties, biodegradability, and bioactivity has been rekindled with the advent of nanoscience. Injectable bone cements made with calcium sulfate (CS) are of significant interest, owing to its compatibility and optimal self-setting property. Its rapid resorption rate, lack of bioactivity, and poor mechanical strength serve as a deterrent for its wide application. Herein, a significantly improved CS-based injectable bone cement (modified calcium sulfate termed as CSmod ), reinforced with various concentrations (0-15%) of a conductive nanocomposite containing gold nanodots and nanohydroxyapatite decorated reduced graphene oxide (rGO) sheets (AuHp@rGO), and functionalized with vancomycin, is presented. The piezo-responsive cement exhibits favorable injectability and setting times, along with improved mechanical properties. The antimicrobial, osteoinductive, and osteoconductive properties of the CSmod cement are confirmed using appropriate in vitro studies. There is an upregulation of the paracrine signaling mediated crosstalk between mesenchymal stem cells and human umbilical vein endothelial cells seeded on these cements. The ability of CSmod to induce endothelial cell recruitment and augment bone regeneration is evidenced in relevant rat models. The results imply that the multipronged activity exhibited by the novel-CSmod cement would be beneficial for bone repair.


Assuntos
Cimentos Ósseos , Nanocompostos , Ratos , Animais , Humanos , Cimentos Ósseos/farmacologia , Durapatita , Ouro , Sulfato de Cálcio , Células Endoteliais , Regeneração Óssea , Fosfatos de Cálcio , Força Compressiva
13.
ACS Appl Mater Interfaces ; 15(21): 25110-25121, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35767722

RESUMO

Supramolecular assemblies with well-defined structural attenuation toward varied functional implications are an emerging area in mimicking natural biomaterials. In that regard, the redox stimuli-responsive ferrocene moiety can reversibly change between a nonpolar ferrocenyl and polar ferrocenium cation that endows interesting modular features to the building blocks with respect to self-assembly/disassembly. We design a series of ferrocene anchored peptide fragment NVFFAKKC using hydrophobic alkyl spacers of different chain lengths. Increasing the spacer length between the redox-responsive and self-assembling motifs increases the propensity to form robust nanofibers, which can be physically cross-linked to form hydrogels. The controlled redox response of the ferrocene moiety tandem with pH control provides access to structural control over the peptide nanostructures and tunable mechanical strengths. Further, such redox-sequestered dormant states hinder the spontaneous nucleation process that we exploit toward seeded supramolecular polymerization to form block cofibers composed of redox-responsive periphery and nonresponsive cores. Finally, such redox sequestration of peptide self-assembly renders an on-off piezoelectric response for potential utilization in peptide bioelectronics.


Assuntos
Nanofibras , Nanoestruturas , Metalocenos , Peptídeos/química , Nanoestruturas/química , Nanofibras/química
14.
Langmuir ; 39(1): 320-333, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525568

RESUMO

Mechanical and solar to electrical energy conversion using piezo- and ferroelectric and photovoltaic effects may be a practical answer to the rising energy demand. In this quest, piezoelectric polymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) has gained interest due to its superior piezo- and ferroelectricity. In photovoltaic applications, inorganic halide perovskite (IHP) of CsPbI3 is considered a prime model compound. However, its application is limited because of the photoactive perovskite phase instability at ambient conditions. Here, we report the in situ synthesis of the stable perovskite γ-CsPbI3 through an electrospinning process at room temperature, encapsulated within a ferroelectric copolymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) as a composite nanofiber. Computational calculation using density functional theory (DFT) reveals that tensile strain plays a critical role in the dynamical stabilization of γ-CsPbI3. This tensile strain is triggered by the electrospinning process, which aids in the formation and growth of γ-CsPbI3. In the CsPbI3-P(VDF-HFP) composite nanofiber, γ-CsPbI3 nucleates the polar ß-crystalline phase in P(VDF-HFP), which results in the intrinsic piezo- and ferroelectric characteristics. The γ-CsPbI3 aids in preferable molecular dipole orientation, resulting in improved nanoscale piezo- and ferroelectric properties. The composite nanofiber features a higher piezoelectric d33 magnitude (∼30 pm/V) and lower decay constant for polarized domains (τcomposite ≈ 17). The composite was utilized as a piezoelectric nanogenerator to demonstrate human physiological motion monitoring in self-power mode. The relevant pressure sensitivities of 81 and 40 mV/kPa for the low-pressure (<0.6 kPa) and high-pressure (>0.6 to 12 kPa) ranges, respectively, promise its suitability in the health care sector.

15.
Angew Chem Int Ed Engl ; 62(9): e202216680, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36585835

RESUMO

Developing robust, wearable, and biocompatible energy harvesting devices with bulk oxides (ceramics and perovskites) is extremely hard to achieve due to their zero mechanical flexibility, heavy metal toxicity, and tunability of properties. Alternatively, discrete inorganic complexes can be an excellent choice to overcome the above-stated issues, thanks to appropriate molecular engineering. Herein, we report an above-room-temperature ferroelectric discrete molecular complex [Cu(L-phe)(bpy)(H2 O)]PF6 ⋅H2 O (1) which is suitable for piezoelectric energy harvesting due to its large values of piezoelectric co-efficient (d33 =10 pm V-1 ) and spontaneous polarization (Ps =1.3 µC cm-2 ). Among the devices prepared with the composite films of polyvinyl alcohol (PVA) and various weight % composition of 1, the 10 Wt % composite shows the highest output voltage of 8 V, a power density of 0.85 µW cm-2 , and output current of 5 µA, which is highest for any discrete inorganic complex reported to date.

16.
Langmuir ; 38(40): 12157-12172, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154054

RESUMO

In recent years, lead-free perovskite materials are exponentially emerging in photovoltaic and optoelectronic applications due to their low toxicity and superior optical properties. On the other hand, the demand for flexible, wearable, and lightweight optoelectronic devices is significantly growing in sensor and actuator technologies. In this scenario, lead-free perovskite-based flexible piezoelectric polymer composites have sparked considerable attention in this field due to their excellent piezo-, pyro-, ferroelectric, and photovoltaic properties. Thus, in this work, a long-term stable lead-free Cs3Bi2I9-PVDF composite is introduced. The in situ growth of the Cs3Bi2I9 perovskite induces 92% yield of the electroactive phase in the PVDF matrix. The possible mechanism behind the electroactive ß-phase transformation is presented via interfacial interactions of PVDF moieties with the Cs3Bi2I9 (CBI) perovskite, which also give rise to long-term environmental stability. Next, a piezoelectric nanogenerator (PNG) has been fabricated with the Cs3Bi2I9-PVDF composite for mechanical energy harvesting, biophysiological motion monitoring, and voice recognitions that have potential utility in the health-care sector. Furthermore, a photodetector is developed to realize the piezo-phototronic effect. It exhibits a fast photoswitching behavior with rise and decay times of 141 and 278 ms, respectively. Thus, it is confirmed that the flexible Cs3Bi2I9-PVDF composite has shown tremendous potential to be used as an optical signal-modulated piezo-responsive wearable sensor.


Assuntos
Compostos de Cálcio , Polivinil , Polímeros de Fluorcarboneto , Hidrolases , Óxidos , Titânio
17.
Sensors (Basel) ; 22(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746426

RESUMO

Techniques such as proximal soil sampling are investigated to increase the sampling density and hence the resolution at which nutrient prescription maps are developed. With the advent of a commercial mobile fluorescence sensor, this study assessed the potential of fluorescence to estimate soil chemical properties and fertilizer recommendations. This experiment was conducted over two years at nine sites on 168 soil samples and used random forest regression to estimate soil properties, fertility classes, and recommended N rates for maize production based on induced fluorescence of air-dried soil samples. Results showed that important soil properties such as soil organic matter, pH, and CEC can be estimated with a correlation of 0.74, 0.75, and 0.75, respectively. When attempting to predict fertility classes, this approach yielded an overall accuracy of 0.54, 0.78, and 0.69 for NO3-N, SOM, and Zn, respectively. The N rate recommendation for maize can be directly estimated by fluorescence readings of the soil with an overall accuracy of 0.78. These results suggest that induced fluorescence is a viable approach for assessing soil fertility. More research is required to transpose these laboratory-acquired soil analysis results to in situ readings successfully.


Assuntos
Agricultura , Solo , Agricultura/métodos , Fertilizantes , Fluorescência , Aprendizado de Máquina , Solo/química , Zea mays
18.
Small ; 18(22): e2201331, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35499190

RESUMO

To fabricate a high-performance and ultrasensitive triboelectric nanogenerator (TENG), choice of a combination of different materials of triboelectric series is one of the prime challenging tasks. An effective way to fabricate a TENG with a single material (abbreviated as S-TENG) is proposed, comprising electrospun nylon nanofibers. The surface potential of the nanofibers are tuned by changing the voltage polarity in the electrospinning setup, employed between the needle and collector. The difference in surface potential leads to a different work function that is the key to design S-TENG with a single material only. Further, S-TENG is demonstrated as an ultrahigh sensitive acoustic sensor with mechanoacoustic sensitivity of ≈27 500 mV Pa-1 . Due to high sensitivity in the low-to-middle decibel (60-70 dB) sounds, S-TENG is highly capable in recognizing different voice signals depending on the condition of the vocal cord. This effective voice recognition ability indicates that it has high potential to open an alternative pathway for medical professionals to detect several diseases such as neurological voice disorder, muscle tension dysphonia, vocal cord paralysis, and speech delay/disorder related to laryngeal complications.


Assuntos
Nanofibras , Nanotecnologia , Fontes de Energia Elétrica , Nylons , Reconhecimento de Voz
19.
J Mater Chem B ; 9(31): 6260-6270, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34338263

RESUMO

Conductive hydrogels are attracting considerable interest in view of their potential in a wide range of applications that include healthcare and electronics. Such hydrogels are generally incorporated with conductive materials/polymers. Herein, we present a series of conductive hydrogels (Ch-CMC-PDA), prepared with no additional conductive material. The hydrogels were synthesized using a combination of chitosan, cellulose (CMC) and dopamine (DA). The conductivity (0.01-3.4 × 10-3 S cm-1) in these gels is attributed to ionic conductivity. Very few conductive hydrogels are endowed with additional properties like injectability, adhesiveness and self-healing, which would help to widen their scope for applications. While the dynamic Schiff base coupling in our hydrogels facilitated self-healing and injectable properties, polydopamine imparted tissue adhesiveness. The porosity, rheological, mechanical and conductive properties of the hydrogels are regulated by the CMC-dialdehyde-polydopamine (CMC-D-PDA) content. The hydrogel was evaluated in various bioelectronics applications like ECG monitoring and triboelectric nanogenerators (TENG). The ability of the hydrogel to support cell growth and serve as a template for tissue regeneration was confirmed using in vitro and in vivo studies. In summary, the integration of such remarkable features in the ionic-conductive hydrogel would enable its usage in bioelectronics and biomedical applications.


Assuntos
Fontes de Energia Bioelétrica , Hidrogéis/química , Engenharia Tecidual , Celulose/química , Quitosana/química , Dopamina/química , Condutividade Elétrica , Humanos , Hidrogéis/síntese química , Teste de Materiais , Estrutura Molecular , Adesivos Teciduais
20.
Langmuir ; 37(23): 7107-7117, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061539

RESUMO

The real-time application of piezoelectric nanogenerators (PNGs) under a harsh environment remains a challenge due to lower output performance and poor durability. Thus, the development of flexible, sensitive, and stable PNGs became a topic of interest to capture different human motions including gesture monitoring to speech recognition. Herein, a scalable approach is adapted where naphthylamine bridging a [Cd(II)-µ-I4] two-dimensional (2D) metal-organic framework (MOF)-reinforced poly(vinylidene fluoride) (PVDF) composite nanofibers mat is prepared to fabricate a flexible and sensitive composite piezoelectric nanogenerator (C-PNG). The needle-shaped MOF was successfully synthesized by the layering and diffusion of two different solutions. The incorporation of single-crystalline 2D MOF ensures a large content of electroactive phases (98%) with a resultant high-magnitude piezoelectric coefficient of 41 pC/N in a composite nanofibers mat due to the interfacial specific interaction with -CH2-/-CF2- dipoles of PVDF. As an outcome, C-PNG generates high electrical output (open-circuit voltage of 22 V and maximum power density of 24 µW/cm2) with a very fast response time (tr ≈ 5 ms) under periodic pressure imparting stimuli. Benefiting from bending and twisting functionality, C-PNG is capable of scavenging biomechanical energy by mimicking complex musculoskeletal motions that broaden its application in wearable electronics and fabric integrated medical devices. In addition, C-PNG also demonstrates an efficient acoustic vibration to electric energy conversion capability with an improved power density and acoustic sensitivity of 6.25 µW and 0.95 V/Pa, respectively. The overall energy conversion efficiency is sufficient to operate several consumer electronics without any energy storage unit. This acoustic observation is further validated by the finite element method-based theoretical simulation. Overall, the 2D MOF-based device design strategy opens up a new possibility to develop a human-motion compatible energy generator and a self-powered acoustic sensor to power up electronic gadgets as well as low-frequency noise detection.


Assuntos
Estruturas Metalorgânicas , Nanofibras , Eletricidade , Humanos , Movimento (Física) , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA