Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Phys ; 48(3): 252-258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969151

RESUMO

Introduction: The purpose of this study was to compare the dosimetric parameters of volumetric modulated arc therapy (VMAT) treatment plans using coplanar and noncoplanar beams in patients with bilateral breast cancer/s (BBCs) in terms of organ at risk sparing and target volume coverage. The hypothesis was to test whether VMAT with noncoplanar beams can result in lesser dose delivery to critical organs such as heart and lung, which will result in lesser overall toxicity. Materials and Methods: Data of nine BBC cases treated at our hospital were retrieved. Computed tomography simulation data of these cases was used to generate noncoplanar VMAT plans and the parameters were compared with standard VMAT coplanar plans. Contouring was done using radiation therapy oncology group guidelines. Forty-five Gray in 25 fractions was planned followed by 10 Gy in five fractions boost in breast conservation cases. Results: No significant difference in planning target volume (PTV) coverage was found for the right breast/chestwall (P = 0.940), left breast/chestwall (P = 0.872), and in the total PTV (P = 0.929). Noncoplanar beams resulted in better cardiac sparing in terms of Dmean heart. The difference in mean dose was >1 Gy (8.80 ± 0.28 - 7.28 ± 0.33, P < 0.001). The Dmean, V20 and V30 values for total lung slightly favor noncoplanar beams, although there was no statistically significant difference. The average monitor units (MUs) were similar for coplanar plans (1515 MU) and noncoplanar plans (1455 MU), but the overall treatment time was higher in noncoplanar plans due to more complex setup and beam arrangement. For noncoplanar VMAT plans, the mean conformity index was slightly better although the homogeneity indices were similar. Conclusion: VMAT plans with noncoplanar beam arrangements had significant dosimetric advantages in terms of sparing of critical organs, that is Dmean of heart doses with almost equivalent lung doses and equally good target coverage. Larger studies with clinical implications need to be considered to validate this data.

2.
Med Phys ; 42(10): 5945-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26429269

RESUMO

PURPOSE: Composition of the coronary artery plaque is known to have critical role in heart attack. While calcified plaque can easily be diagnosed by conventional CT, it fails to distinguish between fibrous and lipid rich plaques. In the present paper, the authors discuss the experimental techniques and obtain a numerical algorithm by which the electron density (ρ(e)) and the effective atomic number (Z(eff)) can be obtained from the dual energy computed tomography (DECT) data. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques. METHODS: For the purpose of calibration of the CT machine, the authors prepare aqueous samples whose calculated values of (ρ(e), Z(eff)) lie in the range of (2.65 × 10(23) ≤ ρ(e) ≤ 3.64 × 10(23)/cm(3)) and (6.80 ≤ Z(eff) ≤ 8.90). The authors fill the phantom with these known samples and experimentally determine HU(V1) and HU(V2), with V1,V2 = 100 and 140 kVp, for the same pixels and thus determine the coefficients of inversion that allow us to determine (ρ(e), Z(eff)) from the DECT data. The HU(100) and HU(140) for the coronary artery plaque are obtained by filling the channel of the coronary artery with a viscous solution of methyl cellulose in water, containing 2% contrast. These (ρ(e), Z(eff)) values of the coronary artery plaque are used for their characterization on the basis of theoretical models of atomic compositions of the plaque materials. These results are compared with histopathological report. RESULTS: The authors find that the calibration gives ρ(e) with an accuracy of ±3.5% while Z(eff) is found within ±1% of the actual value, the confidence being 95%. The HU(100) and HU(140) are found to be considerably different for the same plaque at the same position and there is a linear trend between these two HU values. It is noted that pure lipid type plaques are practically nonexistent, and microcalcification, as observed in histopathology, has to be taken into account to explain the nature of the observed (ρ(e), Z(eff)) data. This also enables us to judge the composition of the plaque in terms of basic model which considers the plaque to be composed of fibres, lipids, and microcalcification. CONCLUSIONS: This simple and reliable method has the potential as an effective modality to investigate the composition of noncalcified coronary artery plaques and thus help in their characterization. In this inversion method, (ρ(e), Z(eff)) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρ(e), Ze(ff)) does not interfere with each other and the nature of the plaque can be identified in terms of a three component model.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Algoritmos , Calibragem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA