Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38091274

RESUMO

This study aimed at investigating the effect of hydrolyzed soya lecithin; also called lysolecithin or lysophosphatidylcholine, on growth performance, caecal microbiota and fat depots in pre-breeding primiparous rabbits does. For this, 60 V-Line primiparous rabbits does (5-6 months) were used in a 30-day experiment. Does were allotted into three iso-nitrogenous iso-caloric dietary treatments (n = 20/group) as follows: (1) CON received 0% soya lecithin, (2) LECL group was fed a basal diet supplemented with 0.5% soya lecithin and (3) LECH group was fed a basal diet supplemented with 1% soya lecithin. Growth performance indices were measured, caecum samples were collected for measurement of specific bacteria via qPCR, and several fat depots including periovarian fat were sampled for adipocyte morphometry and fatty acid profiling. Statistical analysis was performed using GLM procedures of SAS v9.4. Soya lecithin increased feed intake (p < 0.05). The abundance of caecal Bifidobacteria species, Ruminococcus species and phylum Butryvibrio-specific genes increased (p < 0.05) in rabbits receiving soya lecithin in their diet, soya lecithin increased the level of polyunsaturated fatty acids in subcutaneous and perirenal fat (p < 0.05) and increased the level of monounsaturated fatty acids in periovarian fat (p < 0.05); additionally, the adipocyte area increased in periovarian and perirenal fat (p < 0.05). In conclusion, soya lecithin at a dose of 0.5% increased feed intake and energy storage in adipocytes and improved the fatty acid profile of periovarian fat.

2.
Animal ; 15(10): 100362, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34583315

RESUMO

With growing concern about including unconventional dietary protein sources in poultry diets to substitute the protein sources that are essential for human consumption such as soybean meal, Azolla leaf meal (ALM) has grown in popularity. In our prior experiment, ALM was used at inclusion rates of 5 and 10%. Five per cent inclusion of ALM increased broiler chicken growth performance, the concentration of cecal propionic acid, and activation of skeletal muscle p70S6 Kinase1 (p70S6K1) without having detrimental effects on the meat quality. Those results prompted us to further evaluate the effect of the same inclusion rates of ALM on phase feeding and intestine and liver health of the broiler chicks. The current study hypothesis is that dietary ALM positively affects phase feeding, intestinal morphology and p70S6K1 activation, cecal microbial gene expression, and improves the liver energy status. For this, we enrolled 135 one-day-old broiler chicks and collected growth performance data (starter, grower, and finisher stages) and samples of the gastrointestinal tract to analyse the morphology of the villi, immune-related organs, mucin, and abundance of intestinal p70S6K1. Cecal bacterial species were analysed using qPCR and liver samples were collected to analyse adenosine monophosphate (AMP) and ATP content and selected oxidative stress biomarkers. ALM increased BW and feed intake during the starter and grower phases but did not affect the feed conversion ratio. Liver oxidative stress and AMP: ATP ratio increased in chickens fed on a diet containing 10% ALM (AZ10; P < 0.05). Jejunum villi length and abundance of duodenal neutral mucin increased but villi of the ileum decreased in chickens fed on a diet containing 5% ALM (AZ5), while lymphoid follicle areas of the cecal tonsils decreased with both doses of ALM. Activation of p70S6K1 increased with AZ10 in the duodenum and AZ5 in the jejunum. In the gut, the family of Enterobacteriaceae decreased with both ALM doses. In conclusion, our results indicate an overall positive effect of dietary inclusion of ALM in the broiler chicken diet via its positive effect on intestinal morphology and function; however, a negative effect on the liver was observed with 10% ALM.


Assuntos
Microbioma Gastrointestinal , Microbiota , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise
3.
Animal ; 15(10): 100348, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34543996

RESUMO

Rapidly growing human populations and the increased need for high nutritive value meat in terms of low fat, high protein, and low sodium content are the driving reasons for the increase in rabbit meat production. However, dietary protein alternatives to sustain rabbit meat production, without competing with humans for strategic crops are needed. Therefore, the current study was conducted to investigate the effect of Azolla leaf meal (ALM) as a dietary protein source on growth performance, meat quality, and abundance and activation of Ribosomal protein S6 kinase ß1 (p70S6K1), a downstream target of mammalian target of rapamycin signalling pathway and, thus, a key player in the regulation of protein synthesis and muscle mass. For this purpose, 60 weaned male V-Line rabbits were blocked for the initial BW and randomly allotted into four dietary treatments, with 15 replicate per treatment (n = 15/group) as follows: (1) CON group was fed on basal diet contains 0% of ALM, (2) AZ10 group fed on diet containing 10% ALM, (3) AZ20 group fed on diet containing 20% ALM, and (4) AZ30 group fed on diet containing 30% ALM. Rabbits were raised individually, and the experimental period was 42 days. At the end of the experiment, rabbits were euthanised and blood and skeletal muscle samples were collected. Body weight and BW gain were the highest in AZ10 group (P = 0.01), while feed intake was the highest in AZ30 (P = 0.01), feed conversion ratio was the lowest in AZ10 and highest in AZ30 (P = 0.01). Dressing % was the highest in AZ10 and lowest in AZ30 groups (P = 0.01). Muscle cross-sectional area was low in both AZ20 and AZ30 groups compared to CON (P = 0.01). The lysine concentration of Longissimus lumborum muscle increased (P = 0.03) while isoleucine tended to decrease in AZ10 vs CON (P = 0.09). The phosphorylation ratio of skeletal muscle p70S6K1 increased in AZ10 and AZ20 groups (P = 0.05). Therefore, ALM could be included in a growing rabbit diet, up to 10%, while higher doses negatively alter production performance, meat quality, and feed efficiency of growing rabbits.


Assuntos
Ração Animal , Composição Corporal , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Carne/análise , Músculo Esquelético/metabolismo , Coelhos , Proteínas Quinases S6 Ribossômicas/metabolismo
4.
Animal ; 14(11): 2423-2432, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32613931

RESUMO

The interest in biodiesel production from oil-bearing seeds rather than soybean necessitates the scientific validation of other good quality protein sources that could substitute soybean meal in animal diets, particularly, broiler chickens where soybean meal constitutes a large portion of their diet. Therefore, the present study was conducted to investigate the effect of sun-dried Azolla leaf meal (ALM) as an unconventional dietary protein source in broiler chicken diet on growth performance, meat quality, skeletal muscle cell growth and protein synthesis through regulation of ribosomal protein S6 kinase (p70S6 kinase α). A total of 120 male Ross 308 broiler chicks were randomly allocated to three dietary treatments. Each treatment had four cages (i.e. replicates) with 10 birds/cage. The control group was fed with a corn-soy-based diet, the AZ5 group was supplemented with 5% ALM and the AZ10 group was supplemented with 10% ALM for 37 days. A 5-day trial was also conducted to measure the apparent nutrient digestibility. Growth performance parameters were measured weekly. At the end of the experiment, 12 birds from each group (3/cage) were euthanized and used for samplings. Inclusion of ALM tended to improve BW gain (P = 0.06) and increased feed intake (P < 0.01). Additionally, ALM decreased the percentage of breast meat cooking loss linearly (P < 0.01). In addition, ALM at a dose of 5% increased the production of propionate in the cecum (P = 0.01). Activation of breast muscle p70S6 kinase was higher when ALM was included in a dose-dependent manner (P < 0.01). The inclusion of ALM increased breast meat redness (P < 0.01); however, the lightness was within the normal range in all groups. Findings from our study suggest that ALM could be included in a broiler chicken diet up to 5% without any major negative effect on meat quality or performance, and it regulates muscle protein synthesis through activation of mammalian target of rapamycin/6S kinase signaling.


Assuntos
Ração Animal , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Carne/análise , Músculo Esquelético , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA