Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Commun ; 15(1): 1975, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438356

RESUMO

Imaging flow cytometry (IFC) combines flow cytometry and fluorescence microscopy to enable high-throughput, multiparametric single-cell analysis with rich spatial details. However, current IFC techniques remain limited in their ability to reveal subcellular information with a high 3D resolution, throughput, sensitivity, and instrumental simplicity. In this study, we introduce a light-field flow cytometer (LFC), an IFC system capable of high-content, single-shot, and multi-color acquisition of up to 5,750 cells per second with a near-diffraction-limited resolution of 400-600 nm in all three dimensions. The LFC system integrates optical, microfluidic, and computational strategies to facilitate the volumetric visualization of various 3D subcellular characteristics through convenient access to commonly used epi-fluorescence platforms. We demonstrate the effectiveness of LFC in assaying, analyzing, and enumerating intricate subcellular morphology, function, and heterogeneity using various phantoms and biological specimens. The advancement offered by the LFC system presents a promising methodological pathway for broad cell biological and translational discoveries, with the potential for widespread adoption in biomedical research.


Assuntos
Bioensaio , Pesquisa Biomédica , Citometria de Fluxo , Microfluídica , Análise de Célula Única
2.
Opt Express ; 31(23): 38550-38559, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017958

RESUMO

Recent advancements in image-scanning microscopy have significantly enriched super-resolution biological research, providing deeper insights into cellular structures and processes. However, current image-scanning techniques often require complex instrumentation and alignment, constraining their broader applicability in cell biological discovery and convenient, cost-effective integration into commonly used frameworks like epi-fluorescence microscopes. Here, we introduce three-dimensional multifocal scanning microscopy (3D-MSM) for super-resolution imaging of cells and tissue with substantially reduced instrumental complexity. This method harnesses the inherent 3D movement of specimens to achieve stationary, multi-focal excitation and super-resolution microscopy through a standard epi-fluorescence platform. We validated the system using a range of phantom, single-cell, and tissue specimens. The combined strengths of structured illumination, confocal detection, and epi-fluorescence setup result in two-fold resolution improvement in all three dimensions, effective optical sectioning, scalable volume acquisition, and compatibility with general imaging and sample protocols. We anticipate that 3D-MSM will pave a promising path for future super-resolution investigations in cell and tissue biology.


Assuntos
Imageamento Tridimensional , Iluminação , Microscopia de Fluorescência/métodos , Cintilografia , Imagens de Fantasmas , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos
3.
ACS Photonics ; 10(9): 3035-3041, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743934

RESUMO

Super-resolution fluorescence microscopy has revolutionized cell biology over the past decade, enabling the visualization of subcellular complexity with unparalleled clarity and detail. However, the rapid development of image-scanning-based super-resolution systems still restrains convenient access to commonly used instruments such as epi-fluorescence microscopes. Here, we present multifocal scanning microscopy (MSM) for super-resolution imaging with simultaneous multicolor acquisition and minimal instrumental complexity. MSM implements a stationary, interposed multifocal multicolor excitation by exploiting the motion of the specimens, realizing super-resolution microscopy through a general epi-fluorescence platform without compromising the image-scanning mechanism or inducing complex instrument alignment. The system is demonstrated with various phantom and biological specimens, and the results present effective resolution doubling, optical sectioning, and contrast enhancement. We anticipate MSM, as a highly accessible and compatible super-resolution technique, to offer a promising methodological pathway for broad cell biological discoveries.

4.
Sci Adv ; 9(35): eadg9245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647399

RESUMO

Fluorescence microscopy is one of the most indispensable and informative driving forces for biological research, but the extent of observable biological phenomena is essentially determined by the content and quality of the acquired images. To address the different noise sources that can degrade these images, we introduce an algorithm for multiscale image restoration through optimally sparse representation (MIRO). MIRO is a deterministic framework that models the acquisition process and uses pixelwise noise correction to improve image quality. Our study demonstrates that this approach yields a remarkable restoration of the fluorescence signal for a wide range of microscopy systems, regardless of the detector used (e.g., electron-multiplying charge-coupled device, scientific complementary metal-oxide semiconductor, or photomultiplier tube). MIRO improves current imaging capabilities, enabling fast, low-light optical microscopy, accurate image analysis, and robust machine intelligence when integrated with deep neural networks. This expands the range of biological knowledge that can be obtained from fluorescence microscopy.


Assuntos
Algoritmos , Elétrons , Microscopia de Fluorescência , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
5.
Lab Chip ; 23(4): 624-630, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36633262

RESUMO

Imaging flow cytometry (IFC) combines conventional flow cytometry with optical microscopy, allowing for high-throughput, multi-parameter screening of single-cell specimens with morphological and spatial information. However, current 3D IFC systems are limited by instrumental complexity and incompatibility with available microfluidic devices or operations. Here, we report portable light-sheet optofluidic microscopy (PLSOM) for 3D fluorescence cytometric imaging. PLSOM exploits a compact, open-top light-sheet configuration compatible with commonly adopted microfluidic chips. The system offers a subcellular resolution (2-4 µm) in all three dimensions, high throughput (∼1000 cells per s), and portability (30 cm (l) × 10 cm (w) × 26 cm (h)). We demonstrated PLSOM for 3D IFC using various phantom and cell systems. The low-cost and custom-built architecture of PLSOM permits easy adaptability and dissemination for broad 3D flow cytometric investigations.


Assuntos
Imageamento Tridimensional , Microscopia , Microscopia/métodos , Citometria de Fluxo , Microfluídica/métodos , Imagem Óptica
6.
Lab Chip ; 21(3): 489-493, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33325966

RESUMO

Optofluidics enables visualizing diverse anatomical and functional traits of single-cell specimens with new degrees of imaging capabilities. However, the current optofluidic microscopy systems suffer from either low resolution to reveal subcellular details or incompatibility with general microfluidic devices or operations. Here, we report optofluidic scanning microscopy (OSM) for super-resolution, live-cell imaging. The system exploits multi-focal excitation using the innate fluidic motion of the specimens, allowing for minimal instrumental complexity and full compatibility with various microfluidic configurations. The results present effective resolution doubling, optical sectioning and contrast enhancement. We anticipate the OSM system to offer a promising super-resolution optofluidic paradigm for miniaturization and different levels of integration at the chip scale.


Assuntos
Técnicas Analíticas Microfluídicas , Dispositivos Lab-On-A-Chip , Microfluídica , Microscopia Confocal , Miniaturização
7.
Biomed Opt Express ; 11(5): 2511-2532, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499940

RESUMO

Holographic microscopes are emerging as suitable tools for in situ diagnostics and environmental monitoring, providing high-throughput, label-free, quantitative imaging capabilities through small and compact devices. In-line holographic microscopes can be realized at contained costs, trading off complexity in the phase retrieval process and being limited to sparse samples. Here we present a 3D printed, cost effective and field portable off-axis holographic microscope based on the concept of holographic microfluidic slide. Our scheme removes complexity from the reconstruction process, as phase retrieval is non iterative and obtainable by hologram demodulation. The configuration we introduce ensures flexibility in the definition of the optical scheme, exploitable to realize modular devices with different features. We discuss trade-offs and design rules of thumb to follow for developing DH microscopes based on the proposed solution. Using our prototype, we image flowing marine microalgae, polystyrene beads, E.coli bacteria and microplastics. We detail the effect on the performance and costs of each parameter, design, and hardware choice, guiding readers toward the realization of optimized devices that can be employed out of the lab by non-expert users for point of care testing.

8.
Nat Commun ; 11(1): 94, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31901080

RESUMO

The rapid development of scientific CMOS (sCMOS) technology has greatly advanced optical microscopy for biomedical research with superior sensitivity, resolution, field-of-view, and frame rates. However, for sCMOS sensors, the parallel charge-voltage conversion and different responsivity at each pixel induces extra readout and pattern noise compared to charge-coupled devices (CCD) and electron-multiplying CCD (EM-CCD) sensors. This can produce artifacts, deteriorate imaging capability, and hinder quantification of fluorescent signals, thereby compromising strategies to reduce photo-damage to live samples. Here, we propose a content-adaptive algorithm for the automatic correction of sCMOS-related noise (ACsN) for fluorescence microscopy. ACsN combines camera physics and layered sparse filtering to significantly reduce the most relevant noise sources in a sCMOS sensor while preserving the fine details of the signal. The method improves the camera performance, enabling fast, low-light and quantitative optical microscopy with video-rate denoising for a broad range of imaging conditions and modalities.


Assuntos
Microscopia de Fluorescência/instrumentação , Algoritmos , Animais , Bovinos , Linhagem Celular , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Microtúbulos/química , Mitocôndrias/química , Semicondutores , Razão Sinal-Ruído
9.
Biomed Opt Express ; 11(12): 7221-7235, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408992

RESUMO

Fluorescence live-cell imaging allows for continuous interrogation of cellular behaviors, and the recent development of portable live-cell imaging platforms has rapidly transformed conventional schemes with high adaptability, cost-effective functionalities and easy accessibility to cell-based assays. However, broader applications remain restrictive due to compatibility with conventional cell culture workflow and biochemical sensors, accessibility to up-right physiological imaging, or parallelization of data acquisition. Here, we introduce miniaturized modular-array fluorescence microscopy (MAM) for compact live-cell imaging in flexible formats. We advance the current miniscopy technology to devise an up-right modular architecture, each combining a gradient-index (GRIN) objective and individually-addressed illumination and acquisition components. Parallelization of an array of such modular devices allows for multi-site data acquisition in situ using conventional off-the-shelf cell chambers. Compared with existing methods, the device offers a high fluorescence sensitivity and efficiency, exquisite spatiotemporal resolution (∼3 µm and up to 60 Hz), a configuration compatible with conventional cell culture assays and physiological imaging, and an effective parallelization of data acquisition. The system has been demonstrated using various calibration and biological samples and experimental conditions, representing a promising solution to time-lapse in situ single-cell imaging and analysis.

10.
Opt Express ; 27(13): 17620-17637, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252719

RESUMO

Single-photon-excitation-based miniaturized microscope, or miniscope, has recently emerged as a powerful tool for imaging neural ensemble activities in freely moving animals. In the meanwhile, this highly flexible and implantable technology promises great potential for studying a broad range of cells, tissues and organs. To date, however, applications have been largely limited by the properties of the imaging modality. It is therefore highly desirable for a method generally applicable for processing miniscopy images, enabling and extending the applications to diverse anatomical and functional traits, spanning various cell types in the brain and other organs. We report an image processing approach, termed BSSE, for background suppression and signal enhancement for miniscope image processing. The BSSE method provides a simple, automatic solution to the intrinsic challenges of overlapping signals, high background and artifacts in miniscopy images. We validated the method by imaging synthetic structures and various biological samples of brain, tumor, and kidney tissues. The work represents a generally applicable tool for miniscopy technology, suggesting broader applications of the miniaturized, implantable and flexible technology for biomedical research.

11.
Light Sci Appl ; 8: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701075

RESUMO

The dynamics and stability of thin liquid films have fascinated scientists over many decades. Thin film flows are central to numerous areas of engineering, geophysics, and biophysics and occur over a wide range of lengths, velocities, and liquid property scales. In spite of many significant developments in this area, we still lack appropriate quantitative experimental tools with the spatial and temporal resolution necessary for a comprehensive study of film evolution. We propose tackling this problem with a holographic technique that combines quantitative phase imaging with a custom setup designed to form and manipulate bubbles. The results, gathered on a model aqueous polymeric solution, provide unparalleled insight into bubble dynamics through the combination of a full-field thickness estimation, three-dimensional imaging, and a fast acquisition time. The unprecedented level of detail offered by the proposed methodology will promote a deeper understanding of the underlying physics of thin film dynamics.

12.
ACS Appl Bio Mater ; 2(11): 4675-4680, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021464

RESUMO

Red blood cells on the surface of a lithium niobate crystal can be used as optical lenses for direct writing of laser-induced refractive index changes. The writing process by such a photomask made of biological lenses is due to the photorefractive effect. Wavefront analysis by a digital holographic microscope is performed for deep and accurate evaluation of local refractive index changes. Different focusing properties can be imprinted on the crystal depending on which type of RBC is employed, discocytes or spherical-like RBCs. The possibility to fix into a solid material the optical fingerprint of the RBCs will have an impact on both diagnostics and cell\material interfacing.

13.
J Biophotonics ; 11(8): e201700332, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29405583

RESUMO

The surface of a c- cut ferroelectric crystal at room temperature is characterized by the so-called screening surface charges, able to compensate the charge due to the spontaneous polarization. Recently, these charges inspired the investigation of the interaction affinity of live cells with lithium niobate and lithium tantalate crystals. However, different knowledge gaps still remain that prevent a reasonable application of these materials for biological applications. Here, a label-free holographic total internal reflection microscopy is shown; the technique is able to evaluate quantitatively the contact area of live fibroblast cells adhering onto the surface of a ferroelectric lithium niobate crystal. The results show values of contact area significantly different between cells adhering onto the positive or negative face of the crystal. This reinforces the reasons for using the polarization charge of these materials to study and/or control cellular processes and, thus, to develop an innovative platform based on polar dielectric functional substrates.


Assuntos
Adesão Celular/efeitos dos fármacos , Holografia , Microscopia , Nióbio/farmacologia , Fenômenos Ópticos , Óxidos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Temperatura
14.
Lab Chip ; 17(16): 2831-2838, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28722051

RESUMO

In the current trend of miniaturization and simplification of imaging flow cytometry, Lab-on-a-Chip (LoC) microfluidic devices represent an innovative and cost-effective solution. In this framework, we propose for the first time a novel platform based on the compactness of a holographic microscope slide (HMS) in combination with the new computational features of space-time digital holography (STDH) that uses a 1D linear sensor array (LSA) instead of 2D CCD or CMOS cameras to respond to real diagnostic needs. In this LoC platform, computational methods, holography, and microfluidics are intertwined in order to provide an imaging system with a reduced amount of optical components and capability to achieve reliable cell counting even in the absence of very accurate flow control. STDH exploits the sample motion into the microfluidic channel to obtain an unlimited field-of-view along the flow direction, independent of the magnification factor. Furthermore, numerical refocusing typical of a holographic modality allows imaging and visualization of the entire volume of the channel, thus avoiding loss of information due to the limited depth of focus of standard microscopes. Consequently, we believe that this platform could open new perspectives for enhancing the throughput by 3D volumetric imaging.


Assuntos
Contagem de Células , Holografia , Imageamento Tridimensional/métodos , Dispositivos Lab-On-A-Chip , Microscopia , Algoritmos , Contagem de Células/instrumentação , Contagem de Células/métodos , Desenho de Equipamento , Eritrócitos/citologia , Holografia/instrumentação , Holografia/métodos , Humanos , Microscopia/instrumentação , Microscopia/métodos
15.
Light Sci Appl ; 6(9): e17055, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167297

RESUMO

Lab-on-a-Chip (LoC) devices are extremely promising in that they enable diagnostic functions at the point-of-care. Within this scope, an important goal is to design imaging schemes that can be used out of the laboratory. In this paper, we introduce and test a pocket holographic slide that allows digital holography microscopy to be performed without an interferometer setup. Instead, a commercial off-the-shelf plastic chip is engineered and functionalized with this aim. The microfluidic chip is endowed with micro-optics, that is, a diffraction grating and polymeric lenses, to build an interferometer directly on the chip, avoiding the need for a reference arm and external bulky optical components. Thanks to the single-beam scheme, the system is completely integrated and robust against vibrations, sharing the useful features of any common path interferometer. Hence, it becomes possible to bring holographic functionalities out of the lab, moving complexity from the external optical apparatus to the chip itself. Label-free imaging and quantitative phase contrast mapping of live samples are demonstrated, along with flexible refocusing capabilities. Thus, a liquid volume can be analyzed in one single shot with no need for mechanical scanning systems.

16.
J Biophotonics ; 10(9): 1163-1170, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27804236

RESUMO

The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion.


Assuntos
Adesão Celular , Fibroblastos/citologia , Holografia , Microscopia/métodos , Animais , Camundongos , Células NIH 3T3
17.
Lab Chip ; 11(23): 4113-6, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21996719

RESUMO

In this work, we show a new technique to measure the direction and amplitude of the electric field generated by microelectrodes in a liquid environment, as often used in microfluidic devices. The method is based on the use of optical tweezers as a force transducer. A trapped, charged particle behaves as a probe. With this technique, it is possible to obtain a detailed map of the electric field, even for very complex electrode structures with a resolution below a micrometre and with a sensitivity as low as a few hundreds of V m(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA