Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709299

RESUMO

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Assuntos
Bactérias , Esgotos , Águas Residuárias , Biopolímeros/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Esgotos/microbiologia , Águas Residuárias/microbiologia , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Celulose/metabolismo , Biofilmes/crescimento & desenvolvimento , Quitina/metabolismo , Nitrificação , Purificação da Água/métodos
3.
Front Microbiol ; 14: 1166607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520362

RESUMO

The production of pyocyanin by Pseudomonas aeruginosa increases its virulence, fitness and biofilm formation. Pyocyanin is also a redox molecule and we hypothesize that ascorbic acid being an antioxidant will interact with pyocyanin. The main objective of this study was to investigate the potential interaction of ascorbic acid with pyocyanin, and also to investigate the impact of ascorbic acid in combination with Furanone-30 on quorum sensing and biofilm formation of P. aeruginosa. When incubated with ascorbic acid, hyperchromic and hypsochromic shifts in pyocyanin absorbance peaks at 385 nm and 695 nm were observed. In the presence of dehydroascorbic acid and citric acid, these shifts were absent, indicating that the intrinsic antioxidant property of ascorbic acid was probably essential in binding to pyocyanin. NMR spectroscopy showed shifts in 1H NMR pyocyanin peaks between 8.2 to 5.8 ppm when incubated in the presence of ascorbic acid. Density Functional Theory (DFT) supported potential interactions between the -CH2OH or -OH moieties of ascorbic acid with the -C=O moiety of pyocyanin. The pyocyanin-ascorbic acid complex impaired pyocyanin binding to DNA. Ascorbic acid combined with furanone-30 elevated quorum-sensing inhibition in P. aeruginosa, which was directly associated with significantly reduced P. aeruginosa virulence, adhesion, aggregation and biofilm formation and enhanced antibiotic-mediated bacterial killing. This study demonstrated that the antioxidant ascorbic acid directly binds to pyocyanin, modulates its structure and results in disruption of biofilm formation and associated tolerance to antibiotics.

4.
Sci Total Environ ; 703: 134927, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767334

RESUMO

Identifying the source of methane (CH4) in groundwater is often complicated due to various production, degradation and migration pathways, particularly in settings where there are multiple groundwater recharge pathways. This study demonstrates the ability to constrain the origin of CH4 within an alluvial aquifer that could be sourced from in situ microbiological production or underlying formations at depth. To characterise the hydrochemical and microbiological processes active within the alluvium, previously reported hydrochemical data (major ion chemistry and isotopic tracers (3H, 14C, 36Cl)) were interpreted in the context of CH4 and carbon dioxide (CO2) isotopic chemistry, and the microbial community composition in the groundwater. The rate of observed oxidation of CH4 within the aquifer was then characterised using a Rayleigh fractionation model. The stratification of the hydrochemical facies and microbiological community populations is interpreted to be a result of the gradational mixing of water from river leakage and floodwater recharge with water from basal artesian inflow. Within the aquifer there is a low abundance of methanogenic archaea indicating that there is limited biological potential for microbial CH4 production. Our results show that the resulting interconnection between hydrochemistry and microbial community composition affects the occurrence and oxidation of CH4 within the alluvial aquifer, constraining the source of CH4 in the groundwater to the geological formations beneath the alluvium.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Metano/análise , Poluentes Químicos da Água/análise , Archaea , Movimentos da Água
5.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980656

RESUMO

A Desulfitobacterium sp. strain AusDCA of the Peptococcaceae family capable of respiring 1,2-dichloroethane (1,2-DCA) to ethene anaerobically with ethanol or hydrogen as electron donor at pH 5.0 with optimal range between pH 6.5-7.5 was isolated from an acidic aquifer near Sydney, Australia. Strain AusDCA is distant (94% nucleotide identity) from its nearest phylogenetic neighbor, D. metallireducens, and could represent a new species. Reference gene-based quantification of growth indicated a doubling time of 2 days in cultures buffered at pH 7.2, and a yield of 7.66 (± 4.0) × 106 cells µmol-1 of 1,2-DCA. A putative 1,2-DCA reductive dehalogenase was translated from a dcaAB locus and had high amino acid identity (97.3% for DcaA and 100% for DcaB) to RdhA1B1 of the 1,2-DCA respiring Dehalobacter strain WL. Proteomic analysis confirmed DcaA expression in the pure culture. Dehalogenation of 1,2-DCA (1.6 mM) was observed in batch cultures established from groundwater at pH 5.5 collected 38 days after in situ bioaugmentation but not in cultures established with groundwater collected at the same time from wells not receiving bioaugmentation. Overall, strain AusDCA can tolerate lower pH than previously characterized organohalide respiring bacteria and remained viable in groundwater at pH 5.5.


Assuntos
Ácidos/metabolismo , Desulfitobacterium/metabolismo , Dicloretos de Etileno/metabolismo , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Austrália , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Desulfitobacterium/classificação , Desulfitobacterium/genética , Desulfitobacterium/isolamento & purificação , Água Subterrânea/química , Halogenação , Concentração de Íons de Hidrogênio , Filogenia , Proteômica
6.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137345

RESUMO

Quantification of microbes in water systems is essential to industrial practices ranging from drinking water and wastewater treatment to groundwater remediation. While quantification using DNA-based molecular methods is precise, the accuracy is dependent on DNA extraction efficiencies. We show that the DNA yield is strongly impacted by the cell concentration in groundwater samples (r = -0.92, P < 0.0001). This has major implications for industrial applications using quantitative polymerase chain reaction (qPCR) to determine cell concentrations in water, including bioremediation. We propose a simple normalization method using a DNA recovery ratio, calculated with the total cell count and DNA yield. Application of this method to enumeration of bacteria and archaea in groundwater samples targeting phylogenetic markers (16S rRNA) demonstrated an increased goodness of fit after normalization (7.04 vs 0.94 difference in Akaike's information criteria). Furthermore, normalization was applied to qPCR quantification of functional genes and combined with DNA sequencing of archaeal and bacterial 16S rRNA genes to monitor changes in abundance of methanogenic archaea and sulphate-reducing bacteria in groundwater. The integration of qPCR and DNA sequencing with appropriate normalization enables high-throughput quantification of microbial groups using increasingly affordable and accessible techniques. This research has implications for microbial ecology and engineering research as well as industrial practice.


Assuntos
Archaea/citologia , Bactérias/citologia , Monitoramento Ambiental/métodos , Água Subterrânea/microbiologia , Microbiologia da Água , Archaea/genética , Bactérias/genética , DNA Arqueal/análise , DNA Arqueal/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Análise de Sequência de DNA/normas
7.
ACS Chem Biol ; 13(3): 548-552, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29363941

RESUMO

Reductive dehalogenases (RDases) are key enzymes involved in the respiratory process of anaerobic organohalide respiring bacteria (ORB). Heterologous expression of respiratory RDases is desirable for structural and functional studies; however, there are few reports of successful expression of these enzymes. Dehalobacter sp. strain UNSWDHB is an ORB, whose preferred electron acceptor is chloroform. This study describes efforts to express recombinant reductive dehalogenase (TmrA), derived from UNSW DHB, using the heterologous hosts Escherichia coli and Bacillus megaterium. Here, we report the recombinant expression of soluble and functional TmrA, using B. megaterium as an expression host under a xylose-inducible promoter. Successful incorporation of iron-sulfur clusters and a corrinoid cofactor was demonstrated using UV-vis spectroscopic analyses. In vitro dehalogenation of chloroform using purified recombinant TmrA was demonstrated. This is the first known report of heterologous expression and purification of a respiratory reductive dehalogenase from an obligate organohalide respiring bacterium.


Assuntos
Bacillus megaterium/genética , Clorofórmio/química , Oxirredutases/genética , Halogenação , Proteínas Recombinantes/genética
8.
Eur J Med Chem ; 143: 1702-1722, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133052

RESUMO

Antimicrobial peptides (AMPs) and their synthetic mimics have received recent interest as new alternatives to traditional antibiotics in attempts to overcome the rise of antibiotic resistance in many microbes. AMPs are part of the natural defenses of most living organisms and they also have a unique mechanism of action against bacteria. Herein, a new series of short amphiphilic cationic peptidomimetics were synthesized by incorporating the 3'-amino-[1,1'-biphenyl]-3-carboxylic acid backbone to mimic the essential properties of natural AMPs. By altering hydrophobicity and charge, we identified the most potent analogue 25g that was active against both Gram-positive Staphylococcus aureus (MIC = 15.6 µM) and Gram-negative Escherichia coli (MIC = 7.8 µM) bacteria. Cytoplasmic permeability assay results revealed that 25g acts primarily by depolarization of lipids in cytoplasmic membranes. The active compounds were also investigated for their cytotoxicity to human cells, lysis of lipid bilayers using tethered bilayer lipid membranes (tBLMs) and their activity against established biofilms of S. aureus and E. coli.


Assuntos
Antibacterianos/farmacologia , Compostos de Bifenilo/farmacologia , Desenho de Fármacos , Peptidomiméticos/farmacologia , Tensoativos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química
9.
Microb Biotechnol ; 11(4): 626-638, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28925579

RESUMO

Coal mining is responsible for 11% of total anthropogenic methane emission thereby contributing considerably to climate change. Attempts to harvest coalbed methane for energy production are challenged by relatively low methane concentrations. In this study, we investigated whether nutrient and acetate amendment of a non-producing sub-bituminous coal well could transform the system to a methane source. We tracked cell counts, methane production, acetate concentration and geochemical parameters for 25 months in one amended and one unamended coal well in Australia. Additionally, the microbial community was analysed with 16S rRNA gene amplicon sequencing at 17 and 25 months after amendment and complemented by metagenome sequencing at 25 months. We found that cell numbers increased rapidly from 3.0 × 104 cells ml-1 to 9.9 × 107 in the first 7 months after amendment. However, acetate depletion with concomitant methane production started only after 12-19 months. The microbial community was dominated by complex organic compound degraders (Anaerolineaceae, Rhodocyclaceae and Geobacter spp.), acetoclastic methanogens (Methanothrix spp.) and fungi (Agaricomycetes). Even though the microbial community had the functional potential to convert coal to methane, we observed no indication that coal was actually converted within the time frame of the study. Our results suggest that even though nutrient and acetate amendment stimulated relevant microbial species, it is not a sustainable way to transform non-producing coal wells into bioenergy factories.


Assuntos
Acetatos/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Microbiota , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Minas de Carvão , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Sedimentos Geológicos/análise , Metagenoma
10.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040474

RESUMO

1,2-Dichloroethane (DCA) is a problematic groundwater pollutant. Factors influencing the distribution and activities of DCA-degrading bacteria are not well understood, which has hampered their application for bioremediation. Here, we used quantitative PCR to investigate the distribution of putative DCA-dehalogenating bacteria at a DCA-impacted site in Sydney (Australia). The dehalogenase genes dhlA, tceA and bvcA were detected in all groundwater samples (n = 15), while vcrA was found in 11/15 samples. The 16S rRNA gene sequences specific to the dehalogenating genera Dehalobacter, Desulfitobacterium and Dehalogenimonas were detected in 15/15, 13/15 and 13/15 samples, respectively, while Dehalococcoides sequences were found in 9/15 samples. The tceA, bvcA and vcrA genes occurred in the same samples as Dehalococcoides and Dehalobacter. Microcosm experiments confirmed the presence of bacteria capable of dechlorination under anoxic conditions. The abundance of the dhlA gene, which is found in hydrolytic DCA degraders, was positively correlated to the DCA concentration, and was unexpectedly most abundant in samples with low oxygen conditions. A dhlA-containing bacterium isolated from the site (Xanthobacter EL8) was capable of anaerobic growth on DCA under denitrifying conditions. The presence of diverse DCA-dehalogenating bacteria at this site indicates that natural attenuation or biostimulation could be valid approaches for site cleanup.


Assuntos
Bactérias/metabolismo , Dicloretos de Etileno/metabolismo , Água Subterrânea/microbiologia , Hidrocarbonetos Clorados/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dicloretos de Etileno/análise , Água Subterrânea/química , Halogenação , Hidrocarbonetos Clorados/análise , Filogenia , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
11.
Microb Biotechnol ; 10(6): 1640-1648, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28631300

RESUMO

We report herein the purification of a chloroform (CF)-reducing enzyme, TmrA, from the membrane fraction of a strict anaerobe Dehalobacter sp. strain UNSWDHB to apparent homogeneity with an approximate 23-fold increase in relative purity compared to crude lysate. The membrane fraction obtained by ultracentrifugation was solubilized in Triton X-100 in the presence of glycerol, followed by purification by anion exchange chromatography. The molecular mass of the purified TmrA was determined to be 44.5 kDa by SDS-PAGE and MALDI-TOF/TOF. The purified dehalogenase reductively dechlorinated CF to dichloromethane in vitro with reduced methyl viologen as the electron donor at a specific activity of (1.27 ± 0.04) × 103 units mg protein-1 . The optimum temperature and pH for the activity were 45°C and 7.2, respectively. The UV-visible spectrometric analysis indicated the presence of a corrinoid and two [4Fe-4S] clusters, predicted from the amino acid sequence. This is the first report of the production, purification and biochemical characterization of a CF reductive dehalogenase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clorofórmio/metabolismo , Clostridiales/enzimologia , Oxirredutases/química , Oxirredutases/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia por Troca Iônica , Clostridiales/química , Clostridiales/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Especificidade por Substrato
12.
Org Biomol Chem ; 15(27): 5743-5755, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28654117

RESUMO

Bacteria regulate the expression of various virulence factors and processes such as biofilm formation through a chemically-mediated communication mechanism called quorum sensing. Bacterial biofilms contribute to antimicrobial resistance as they can protect bacteria embedded in their matrix from the effects of antibiotics. Thus, developing novel quorum sensing inhibitors, which can inhibit biofilm formation, is a viable strategy to combat antimicrobial resistance. We report herein the synthesis of novel acyclic and cyclic glyoxamide derivatives via ring-opening reactions of N-acylisatins. These compounds were evaluated for their quorum sensing inhibition activity against P. aeruginosa MH602 and E. coli MT102. Compounds 20, 21 and 30 displayed the greatest quorum sensing inhibition activity against P. aeruginosa MH602, with 71.5%, 71.5%, and 74% inhibition, respectively, at 250 µM. Compounds 18, 20 and 21 exhibited the greatest QSI activity against E. coli MT102, with 71.5%, 72.1% and 73.5% quorum sensing inhibition activity, respectively. In addition, the biofilm inhibition activity was also investigated against P. aeruginosa and E. coli at 250 µM. The glyoxamide compounds 16, 18 and 19 exhibited 71.2%, 66.9%, and 66.5% inhibition of P. aeruginosa biofilms, respectively; whereas compounds 12, 20, and 22 showed the greatest inhibitory activity against E. coli biofilms with 87.9%, 90.8% and 89.5%, respectively. Finally, the determination of the in vitro toxicity against human MRC-5 lung fibroblast cells revealed that these novel glyoxamide compounds are non-toxic to human cells.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química
13.
Front Microbiol ; 8: 558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421054

RESUMO

Dehalobacter sp. strain TeCB1 was isolated from groundwater near Sydney, Australia, that is polluted with a range of organochlorines. The isolated strain is able to grow by reductive dechlorination of 1,2,4,5-tetrachlorobenzene to 1,3- and 1,4-dichlorobenzene with 1,2,4-trichlorobenzene being the intermediate daughter product. Transient production of 1,2-dichlorobenzene was detected with subsequent conversion to monochlorobenzene. The dehalogenation capability of strain TeCB1 to respire 23 alternative organochlorines was examined and shown to be limited to the use of 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene. Growth on 1,2,4-trichlorobenzene resulted in the production of predominantly 1,3- and 1,4-dichlorobenzene. The inability of strain TeCB1 to grow on 1,2-dichlorobenzene indicated that the production of monochlorobenzene during growth on 1,2,4,5-tetarchlorobezene was cometabolic. The annotated genome of strain TeCB1 contained only one detectable 16S rRNA gene copy and genes for 23 full-length and one truncated Reductive Dehalogenase (RDase) homologs, five unique to strain TeCB1. Identification and functional characterization of the 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene RDase (TcbA) was achieved using native-PAGE coupled with liquid chromatography tandem mass spectrometry. Interestingly, TcbA showed higher amino acid identity with tetrachloroethene reductases PceA (95% identity) from Dehalobacter restrictus PER-K23 and Desulfitobacterium hafniense Y51 than with the only other chlorinated benzene reductase [i.e., CbrA (30% identity)] functionally characterized to date.

14.
Org Biomol Chem ; 15(9): 2033-2051, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203673

RESUMO

Antimicrobial resistance in bacteria is becoming increasingly prevalent, posing a critical challenge to global health. Bacterial biofilm formation is a common resistance mechanism that reduces the effectiveness of antibiotics. Thus, the development of compounds that can disrupt bacterial biofilms is a potential strategy to combat antimicrobial resistance. We report herein the synthesis of amphipathic guanidine-embedded glyoxamide-based peptidomimetics via ring-opening reactions of N-naphthoylisatins with amines and amino acids. These compounds were investigated for their antibacterial activity by the determination of minimum inhibitory concentration (MIC) against S. aureus and E. coli. Compounds 35, 36, and 66 exhibited MIC values of 6, 8 and 10 µg mL-1 against S. aureus, respectively, while compounds 55 and 56 showed MIC values of 17 and 19 µg mL-1 against E. coli, respectively. Biofilm disruption and inhibition activities were also evaluated against various Gram-positive and Gram-negative bacteria. The most active compound 65 exhibited the greatest disruption of established biofilms by 65% in S. aureus, 61% in P. aeruginosa, and 60% in S. marcescens respectively, at 250 µM concentration, while compound 52 inhibited the formation of biofilms by 72% in S. marcescens at 250 µM. We also report here the in vitro toxicity against MRC-5 human lung fibroblast cells. Finally, the pore forming capability of the three most potent compounds were tested using tethered bilayer lipid membrane (tBLM) technology.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Guanidina/química , Guanidina/farmacologia , Peptidomiméticos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
15.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232453

RESUMO

Dehalobacter sp. strain TeCB1 was isolated from groundwater contaminated with a mixture of organohalides and is able to respire 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene. Here, we report its 3.13-Mb draft genome sequence.

16.
Bioorg Med Chem ; 25(3): 1183-1194, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049617

RESUMO

Bacteria communicate with one another and regulate their pathogenicity through a phenomenon known as quorum sensing (QS). When the bacterial colony reaches a threshold density, the QS system induces the production of virulence factors and the formation of biofilms, a powerful defence system against the host's immune responses. The glucosamine monomer has been shown to disrupt the bacterial QS system by inhibiting autoinducer (AI) signalling molecules such as the acyl-homoserine lactones (AHLs). In this study, the synthesis of acetoxy-glucosamides 8, hydroxy-glucosamides 9 and 3-oxo-glucosamides 12 was performed via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) coupling methods. All of the synthesized compounds were tested against two bacterial strains, P. aeruginosa MH602 (LasI/R-type QS) and E. coli MT102 (LuxI/R-type QS), for QS inhibitory activity. The most active compound 9b showed 79.1% QS inhibition against P. aeruginosa MH602 and 98.4% against E. coli MT102, while compound 12b showed 64.5% inhibition against P. aeruginosa MH602 and 88.1% against E. coli MT102 strain at 2mM concentration. The ability of the compounds to inhibit the production of the virulence factor pyocyanin and biofilm formation in the P. aeruginosa (PA14) strain was also examined. Finally, computational docking studies were performed with the LasR receptor protein.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Glucosamina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Glucosamina/síntese química , Glucosamina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
17.
Front Microbiol ; 8: 2429, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312161

RESUMO

Pyocyanin secreted by Pseudomonas aeruginosa is a virulence factor that damages epithelial cells during infection through the action of reactive oxygen species, however, little is known about its direct effect on biofilms. We demonstrated that pyocyanin-producing P. aeruginosa strains (PA14WT, DKN370, AES-1R, and AES-2) formed robust biofilms in contrast to the poorly formed biofilms of the pyocyanin mutant PA14ΔphzA-G and the low pyocyanin producer AES-1M. Addition of DNase I and reduced glutathione (GSH) significantly reduced biofilm biomass of pyocyanin-producing strains (P < 0.05) compared to non-pyocyanin producers. Subsequently we showed that a combined treatment comprising: GSH + DNase I + antibiotic, disrupted and reduced biofilm biomass up to 90% in cystic fibrosis isolates AES-1R, AES-2, LESB58, and LES431 and promoted lung epithelial cell (A549) recovery and growth. We also showed that exogenously added GSH restored A549 epithelial cell glutathione reductase activity in the presence of pyocyanin through recycling of GSSG to GSH and consequently increased total intracellular GSH levels, inhibiting oxidative stress, and facilitating cell growth and confluence. These outcomes indicate that GSH has multiple roles in facilitating a return to normal epithelial cell growth after insult by pyocyanin. With increased antibiotic resistance in many bacterial species, there is an urgency to establish novel antimicrobial agents. GSH is able to rapidly and comprehensively destroy P. aeruginosa associated biofilms while at a same time assisting in the recovery of host cells and re-growth of damaged tissue.

18.
Microbiologyopen ; 6(2)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27998037

RESUMO

Microbial colonization of prepainted steel, commonly used in roofing applications, impacts their aesthetics, durability, and functionality. Understanding the relevant organisms and the mechanisms by which colonization occurs would provide valuable information that can be subsequently used to design fouling prevention strategies. Here, next-generation sequencing and microbial community finger printing (T-RFLP) were used to study the community composition of microbes colonizing prepainted steel roofing materials at Burrawang, Australia and Kapar, Malaysia over a 52-week period. Community diversity was low and was dominated by Bacillus spp., cyanobacteria, actinobacteria, Cladosporium sp., Epicoccum nigrum, and Teratosphaeriaceae sp. Cultivation-based methods isolated approximately 20 different fungi and bacteria, some of which, such as E. nigrum and Cladosporium sp., were represented in the community sequence data. Fluorescence in situ hybridization imaging showed that fungi were the most dominant organisms present. Analysis of the sequence and T-RFLP data indicated that the microbial communities differed significantly between locations and changed significantly over time. The study demonstrates the utility of molecular ecology tools to identify and characterize microbial communities associated with the fouling of painted steel surfaces and ultimately can enable the targeted development of control strategies based on the dominant species responsible for fouling.


Assuntos
Bactérias , Biofilmes/crescimento & desenvolvimento , Materiais de Construção/microbiologia , Fungos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Pintura/microbiologia , Polimorfismo de Fragmento de Restrição/genética , Análise de Sequência de DNA , Aço
19.
Front Microbiol ; 7: 1313, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602027

RESUMO

N-acetyl glucosamine, the monomer of chitin, is an abundant source of carbon and nitrogen in nature as it is the main component and breakdown product of many structural polymers. Some bacteria use N-acyl-L-homoserine lactone (AHL) mediated quorum sensing (QS) to regulate chitinase production in order to catalyze the cleavage of chitin polymers into water soluble N-acetyl-D-glucosamine (NAG) monomers. In this study, the impact of NAG on QS activities of LuxR, LasR, and CviR regulated gene expression was investigated by examining the effect of NAG on QS regulated green fluorescent protein (GFP), violacein and extracellular chitinase expression. It was discovered that NAG inhibits AHL dependent gene transcription in AHL reporter strains within the range of 50-80% reduction at low millimolar concentrations (0.25-5 mM). Evidence is presented supporting a role for both competitive inhibition at the AHL binding site of LuxR type transcriptional regulators and catabolite repression. Further, this study shows that NAG down-regulates CviR induced violacein production while simultaneously up-regulating CviR dependent extracellular enzymes, suggesting that an unknown NAG dependent regulatory component influences phenotype expression. The quorum sensing inhibiting activity of NAG also adds to the list of compounds with known quorum sensing inhibiting activities.

20.
PLoS One ; 11(8): e0159760, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27490246

RESUMO

A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA-stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methanogenesis. Active biomass was harvested from three bench-scale thermophilic bioreactors treating waste activated sludge at 55, 60 and 65°C, and fed with 13-C labelled and 12C-unlabelled acetate. Acetate uptake and cumulative methane production were determined and kinetic parameters were estimated using model-based analysis. Pyrosequencing performed on 13C- enriched samples indicated that organisms accumulating labelled carbon were Coprothermobacter (all temperatures between 55 and 65°C), acetoclastic Methanosarcina (55 to 60°C) and hydrogenotrophic Methanothermobacter (60 to 65°C). The increased relative abundance of Coprothermobacter with increased temperature corresponding with a shift to syntrophic acetate oxidation identified this as a potentially key oxidiser. Methanosarcina likely acts as both a hydrogen utilising and acetoclastic methanogen at 55°C, and is replaced by Methanothermobacter as a hydrogen utiliser at higher temperatures.


Assuntos
Acetatos/metabolismo , Euryarchaeota/crescimento & desenvolvimento , Metano/biossíntese , Methanosarcina/crescimento & desenvolvimento , Thermoanaerobacter/crescimento & desenvolvimento , Acetatos/química , Biomassa , Reatores Biológicos , Isótopos de Carbono , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Euryarchaeota/classificação , Euryarchaeota/genética , Marcação por Isótopo , Cinética , Methanosarcina/classificação , Methanosarcina/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Esgotos/microbiologia , Temperatura , Thermoanaerobacter/classificação , Thermoanaerobacter/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA