RESUMO
The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinatory therapies to improve treatment efficacy. Here, we demonstrate that ruxolitinib induced autophagy in JAK2V617F cell lines and primary MPN patient cells through the activation of protein phosphatase 2A (PP2A). Inhibition of autophagy or PP2A activity along with ruxolitinib treatment reduced proliferation and increased the death of JAK2V617F cells. Accordingly, proliferation and clonogenic potential of JAK2V617F-driven primary MPN patient cells, but not of normal hematopoietic cells, were markedly impaired by ruxolitinib treatment with autophagy or PP2A inhibitor. Finally, preventing ruxolitinib-induced autophagy with a novel potent autophagy inhibitor Lys05 improved leukemia burden reduction and significantly prolonged the mice's overall survival compared with ruxolitinib alone. This study demonstrates that PP2A-dependent autophagy mediated by JAK2 activity inhibition contributes to resistance to ruxolitinib. Altogether, our data support that targeting autophagy or its identified regulator PP2A could enhance sensitivity to ruxolitinib of JAK2V617F MPN cells and improve MPN patient care.
Assuntos
Transtornos Mieloproliferativos , Neoplasias , Camundongos , Animais , Janus Quinase 2 , Proteína Fosfatase 2/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Autofagia , MutaçãoRESUMO
Deregulation of mRNA translation is a widespread characteristic of glioblastoma (GBM), aggressive malignant brain tumors that are resistant to conventional therapies. RNA-binding proteins (RBPs) play a critical role in translational regulation, yet the mechanisms and impact of these regulations on cancer development, progression and response to therapy remain to be fully understood. Here, we showed that hnRNP H/F RBPs are potent regulators of translation through several mechanisms that converge to modulate the expression and/or the activity of translation initiation factors. Among these, hnRNP H/F regulate the phosphorylation of eIF4E and its translational targets by controlling RNA splicing of the A-Raf kinase mRNA, which in turn modulates the MEK-ERK/MAPK signaling pathway. The underlying mechanism involves RNA G-quadruplex (RG4s), RNA structures whose modulation phenocopies hnRNP H/F translation regulation in GBM cells. Our results highlighted that hnRNP H/F are essential for key functional pathways regulating proliferation and survival of GBM, highlighting its targeting as a promising strategy for improving therapeutic outcomes.
RESUMO
The differentiation of B cells into plasmablasts (PBs) and then plasma cells (PCs) is associated with extensive cell reprogramming and new cell functions. By using specific inhibition strategies (including a novel morpholino RNA antisense approach), we found that early, sustained upregulation of the proviral integrations of Moloney virus 2 (PIM2) kinase is a pivotal event during human B-cell in vitro differentiation and then continues in mature normal and malignant PCs in the bone marrow. In particular, PIM2 sustained the G1/S transition by acting on CDC25A and p27Kip1 and hindering caspase 3-driven apoptosis through BAD phosphorylation and cytoplasmic stabilization of p21Cip1. In PCs, interleukin-6 triggered PIM2 expression, resulting in antiapoptotic effects on which malignant PCs were particularly dependent. In multiple myeloma, pan-PIM and myeloid cell leukemia-1 (MCL1) inhibitors displayed synergistic activity. Our results highlight a cell-autonomous function that links kinase activity to the newly acquired secretion ability of the PBs and the adaptability observed in both normal and malignant PCs. These findings should finally prompt the reconsideration of PIM2 as a therapeutic target in multiple myeloma.
Assuntos
Mieloma Múltiplo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Plasmócitos/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genéticaRESUMO
The cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome-lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27-/- MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27-/- cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism.
Assuntos
Acetiltransferases/metabolismo , Autofagia/fisiologia , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Acetilação , Animais , Humanos , Camundongos , Transdução de SinaisRESUMO
Resistance of acute myeloid leukemia (AML) to therapeutic agents is frequent. Consequently, the mechanisms leading to this resistance must be understood and addressed. In this paper, we demonstrate that inhibition of deubiquitinylase USP7 significantly reduces cell proliferation in vitro and in vivo, blocks DNA replication progression and increases cell death in AML. Transcriptomic dataset analyses reveal that a USP7 gene signature is highly enriched in cells from AML patients at relapse, as well as in residual blasts from patient-derived xenograft (PDX) models treated with clinically relevant doses of cytarabine, which indicates a relationship between USP7 expression and resistance to therapy. Accordingly, single-cell analysis of AML patient samples at relapse versus at diagnosis showed that a gene signature of the pre-existing subpopulation responsible for relapse is enriched in transcriptomes of patients with a high USP7 level. Furthermore, we found that USP7 interacts and modulates CHK1 protein levels and functions in AML. Finally, we demonstrated that USP7 inhibition acts in synergy with cytarabine to kill AML cell lines and primary cells of patients with high USP7 levels. Altogether, these data demonstrate that USP7 is both a marker of resistance to chemotherapy and a potential therapeutic target in overcoming resistance to treatment.
Assuntos
Biomarcadores Tumorais/metabolismo , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Peptidase 7 Específica de Ubiquitina/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.
RESUMO
Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.
Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Humanos , Leucemia/genética , Leucemia Mieloide Aguda/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Mitocôndrias/genética , Oxirredução , Fosforilação OxidativaRESUMO
Autophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies reported that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy by an unknown mechanism. Here we find that p27 controls autophagy via an mTORC1-dependent mechanism in amino acid-deprived cells. During prolonged starvation, a fraction of p27 is recruited to lysosomes, where it interacts with LAMTOR1, a component of the Ragulator complex required for mTORC1 activation. Binding of p27 to LAMTOR1 prevents Ragulator assembly and mTORC1 activation, promoting autophagy. Conversely, p27-/- cells exhibit elevated mTORC1 signalling as well as impaired lysosomal activity and autophagy. This is associated with cytoplasmic sequestration of TFEB, preventing induction of the lysosomal genes required for lysosome function. LAMTOR1 silencing or mTOR inhibition restores autophagy and induces apoptosis in p27-/- cells. Together, these results reveal a direct coordinated regulation between the cell cycle and cell growth machineries.
Assuntos
Aminoácidos/metabolismo , Autofagia/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Lisossomos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Inanição/metabolismoRESUMO
We recently identified the CDC25A phosphatase as a key actor in proliferation and differentiation in acute myeloid leukemia expressing the FLT3-ITD mutation. In this paper we demonstrate that CDC25A level is controlled by a complex STAT5/miR-16 transcription and translation pathway working downstream of this receptor. First, we established by CHIP analysis that STAT5 is directly involved in FLT3-ITD-dependent CDC25A gene transcription. In addition, we determined that miR-16 expression is repressed by FLT3-ITD activity, and that STAT5 participates in this repression. In accordance with these results, miR-16 expression was significantly reduced in a panel of AML primary samples carrying the FLT3-ITD mutation when compared with FLT3wt cells. The expression of a miR-16 mimic reduced CDC25A protein and mRNA levels, and RNA interference-mediated down modulation of miR-16 restored CDC25A expression in response to FLT3-ITD inhibition. Finally, decreasing miR-16 expression partially restored the proliferation of cells treated with the FLT3 inhibitor AC220, while the expression of miR-16 mimic stopped this proliferation and induced monocytic differentiation of AML cells. In summary, we identified a FLT3-ITD/STAT5/miR-16/CDC25A axis essential for AML cell proliferation and differentiation.
Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fosfatases cdc25/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Mutação , Fator de Transcrição STAT5/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Adenocarcinoma de Pulmão/enzimologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citoplasma/enzimologia , Neoplasias Pulmonares/enzimologia , Proteína rhoB de Ligação ao GTP/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Citoplasma/genética , Citoplasma/patologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Ligação Proteica , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/genéticaRESUMO
Cytokinesis begins in anaphase with the formation of the central spindle. PRC1 is a microtubule associated protein that plays an essential role in central spindle formation by crosslinking antiparallel microtubules. We have identified PRC1 as a novel binding partner for p27Kip1 (p27). p27 is a cyclin-CDK inhibitor that causes cell cycle arrest in G1. However, p27 has also been involved in the regulation of G2/M progression and cytokinesis, as well as of other cellular processes, including actin and microtubule cytoskeleton dynamics. We found that p27 interferes with the ability of PRC1 to bind to microtubules, without affecting PRC1 dimerization or its capacity to interact with other partners such as KIF4. In this way, p27 inhibited microtubule bundling by PRC1 in vitro and prevented the extensive microtubule bundling phenotype caused by PRC1 overexpression in cells in culture. Finally, co-expression of p27 or a p27 mutant that does not bind cyclin-CDKs inhibited multinucleation induced by PRC1 overexpression. Together, our results suggest that p27 may participate in the regulation of mitotic progression in a CDK-independent manner by modulating PRC1 activity.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Imunofluorescência , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mitose/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas RecombinantesRESUMO
Although the kinase CHK1 is a key player in the DNA damage response (DDR), several studies have recently provided evidence of DDR-independent roles of CHK1, in particular following phosphorylation of its S280 residue. Here, we demonstrate that CHK1 S280 phosphorylation is cell cycle-dependent and peaks during mitosis. We found that this phosphorylation was catalyzed by the kinase PIM2, whose protein expression was also increased during mitosis. Importantly, we identified polo-like kinase 1 (PLK1) as a direct target of CHK1 during mitosis. Genetic or pharmacological inhibition of CHK1 reduced the activating phosphorylation of PLK1 on T210, and recombinant CHK1 was able to phosphorylate T210 of PLK1 in vitro Accordingly, S280-phosphorylated CHK1 and PLK1 exhibited similar specific mitotic localizations, and PLK1 was co-immunoprecipitated with S280-phosphorylated CHK1 from mitotic cell extracts. Moreover, CHK1-mediated phosphorylation of PLK1 was dependent on S280 phosphorylation by PIM2. Inhibition of PIM proteins reduced cell proliferation and mitotic entry, which was rescued by expressing a T210D phosphomimetic mutant of PLK1. Altogether, these data identify a new PIM-CHK1-PLK1 phosphorylation cascade that regulates different mitotic steps independently of the CHK1 DDR function.This article has an associated First Person interview with the first author of the paper.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Células HeLa , Humanos , Camundongos Knockout , Mitose/genética , Fosforilação/genética , Fosforilação/fisiologia , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem , Quinase 1 Polo-LikeRESUMO
Resistance of acute myeloid leukemia to current therapies leads to frequent relapses. Identification of molecular mechanisms involved in chemoresistance constitutes a key challenge to define new therapeutic concepts. Here, we show that the ATR/CHK1 pathway, essential in maintaining genomic stability, is involved in resistance and proliferation characteristics of leukemic cells.
RESUMO
p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.
Assuntos
Cortactina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Podossomos/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular , Movimento Celular , Humanos , CamundongosRESUMO
The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognostic marker associated with shorter overall, event-free, and relapse-free survivals and determined that the expression of CHEK1 can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression of DNA replication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoring CHEK1 expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.
Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinase 1 do Ponto de Checagem/metabolismo , Citarabina/farmacologia , Replicação do DNA/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Masculino , Proteínas de Neoplasias/metabolismoRESUMO
The Cdc25A phosphatase is an essential activator of CDK-cyclin complexes at all steps of the eukaryotic cell cycle. The activity of Cdc25A is itself regulated in part by positive and negative feedback regulatory loops performed by its CDK-cyclin substrates that occur in G1 as well as during the G1/S and G2/M transitions. However, the regulation of Cdc25A during G2 phase progression before mitotic entry has not been intensively characterized. Here, we identify by mass spectrometry analysis a new phosphorylation event of Cdc25A on Serine283. Phospho-specific antibodies revealed that the phosphorylation of this residue appears in late S/G2 phase of an unperturbed cell cycle and is performed by CDK-cyclin complexes. Overexpression studies of wild-type and non-phosphorylatable mutant forms of Cdc25A indicated that Ser283 phosphorylation increases the G2/M-promoting activity of the phosphatase without impacting its stability or subcellular localization. Our results therefore identify a new positive regulatory loop between Cdc25A and its CDK-cyclin substrates which contributes to accelerate entry into mitosis through the regulation of Cdc25A activity in G2.
Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Fase G2 , Mitose , Fase S , Serina/metabolismo , Fosfatases cdc25/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/metabolismo , Espectrometria de Massas , Mutação/genética , Fosforilação , Estabilidade Proteica/efeitos dos fármacos , Fosfatases cdc25/químicaRESUMO
CDKN1C encodes the cyclin-CDK inhibitor p57(Kip2) (p57), a negative regulator of the cell cycle and putative tumour suppressor. Genetic and epigenetic alterations causing loss of p57 function are the most frequent cause of Beckwith-Wiedemann syndrome (BWS), a genetic disorder characterized by multiple developmental anomalies and increased susceptibility to tumour development during childhood. So far, BWS development has been attributed entirely to the deregulation of proliferation caused by loss of p57-mediated CDK inhibition. However, a fraction of BWS patients have point mutations in CDKN1C located outside of the CDK inhibitory region, suggesting the involvement of other parts of the protein in the disease. To test this possibility, we generated knock-in mice deficient for p57-mediated cyclin-CDK inhibition (p57(CK) (-) ), the only clearly defined function of p57. Comparative analysis of p57(CK) (-) and p57(KO) mice provided clear evidence for CDK-independent roles of p57 and revealed that BWS is not caused entirely by CDK deregulation, as several features of BWS are caused by the loss of CDK-independent roles of p57. Thus, while the genetic origin of BWS is well understood, our results underscore that the underlying molecular mechanisms remain largely unclear. To probe these mechanisms further, we determined the p57 interactome. Several partners identified are involved in genetic disorders with features resembling those caused by CDKN1C mutation, suggesting that they could be involved in BWS pathogenesis and revealing a possible connection between seemingly distinct syndromes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Síndrome de Beckwith-Wiedemann/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Regulação da Expressão Gênica/genética , Proteínas Supressoras de Tumor/genética , Sequência de Aminoácidos , Animais , Síndrome de Beckwith-Wiedemann/patologia , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fenótipo , Alinhamento de Sequência , Proteínas Supressoras de Tumor/metabolismoRESUMO
Internal tandem duplication of the Fms-like tyrosine kinase-3 receptor (FLT3) internal tandem duplication (ITD) is found in 30% of acute myeloid leukemia (AML) and is associated with a poor outcome. In addition to tyrosine kinase inhibitors, therapeutic strategies that modulate the expression of FLT3-ITD are also promising. We show that AML samples bearing FLT3-ITD mutations are more sensitive to proteasome inhibitors than wild-type samples and this sensitivity is strongly correlated with a higher FLT3-ITD allelic burden. Using pharmacologic inhibitors of autophagy, specific downregulation of key autophagy proteins including Vps34, autophagy gene (Atg)5, Atg12, Atg13, biochemical, and microscopy studies, we demonstrated that proteasome inhibitors induced cytotoxic autophagy in AML cells. FLT3-ITD molecules were detectable within autophagosomes after bortezomib treatment indicating that autophagy induction was responsible for the early degradation of FLT3-ITD, which preceded the inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), PI3K/AKT, and STAT5 pathways, and subsequent activation of cell death. Moreover, proteasome inhibitors overcome resistance to quizartinib induced by mutations in the kinase domain of FLT3, suggesting that these compounds may prevent the emergence of mutant clones arising from tyrosine kinase inhibitor treatments. In xenograft mice models, bortezomib stimulated the conversion of LC3-I to LC3-II, indicating induction of autophagy in vivo, downregulated FLT3-ITD protein expression and improved overall survival. Therefore, selecting patients according to FLT3-ITD mutations could be a new way to detect a significant clinical activity of proteasome inhibitors in AML patients.
Assuntos
Autofagia/efeitos dos fármacos , Bortezomib/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
We investigated cell cycle regulation in acute myeloid leukemia cells expressing the FLT3-ITD mutated tyrosine kinase receptor, an underexplored field in this disease. Upon FLT3 inhibition, CDC25A mRNA and protein were rapidly down-regulated, while levels of other cell cycle proteins remained unchanged. This regulation was dependent on STAT5, arguing for FLT3-ITD-dependent transcriptional regulation of CDC25A. CDC25 inhibitors triggered proliferation arrest and cell death of FLT3-ITD as well as FLT3-ITD/TKD AC-220 resistant cells, but not of FLT3-wt cells. Consistently, RNA interference-mediated knock-down of CDC25A reduced the proliferation of FLT3-ITD cell lines. Finally, the clonogenic capacity of primary FLT3-ITD AML cells was reduced by the CDC25 inhibitor IRC-083864, while FLT3-wt AML and normal CD34+ myeloid cells were unaffected. In good agreement, in a cohort of 100 samples from AML patients with intermediate-risk cytogenetics, high levels of CDC25A mRNA were predictive of higher clonogenic potential in FLT3-ITD+ samples, not in FLT3-wt ones.Importantly, pharmacological inhibition as well as RNA interference-mediated knock-down of CDC25A also induced monocytic differentiation of FLT3-ITD positive cells, as judged by cell surface markers expression, morphological modifications, and C/EBPα phosphorylation. CDC25 inhibition also re-induced monocytic differentiation in primary AML blasts carrying the FLT3-ITD mutation, but not in blasts expressing wild type FLT3. Altogether, these data identify CDC25A as an early cell cycle transducer of FLT3-ITD oncogenic signaling, and as a promising target to inhibit proliferation and re-induce differentiation of FLT3-ITD AML cells.