Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994556

RESUMO

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Assuntos
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteólise , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Azepinas/química , Sítios de Ligação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cisteína/química , Dasatinibe/química , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/química , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/genética
3.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562363

RESUMO

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Assuntos
Estresse Fisiológico , Aminoácidos/química , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Feminino , Humanos , Íons , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos , Zinco/farmacologia
4.
Dev Cell ; 56(5): 588-601.e9, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33609460

RESUMO

Cell-cell fusion is a frequent and essential event during development, and its dysregulation causes diseases ranging from infertility to muscle weakness. Fusing cells need to repeatedly remodel their plasma membrane through orchestrated formation and disassembly of actin filaments, but how the dynamic reorganization of the cortical actin cytoskeleton is controlled is still poorly understood. Here, we identified a ubiquitin-dependent toggle switch that establishes reversible actin bundling during mammalian cell fusion. We found that EPS8-IRSp53 complexes stabilize cortical actin bundles at sites of cell contact to promote close membrane alignment. EPS8 monoubiquitylation by CUL3KCTD10 displaces EPS8-IRSp53 from membranes and counteracts actin bundling, a dual activity that restricts actin bundling to allow paired cells to progress with fusion. We conclude that cytoskeletal rearrangements during development are precisely controlled by ubiquitylation, raising the possibility of modulating the efficiency of cell-cell fusion for therapeutic benefit.


Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fusão Celular , Proteínas Culina/metabolismo , Mioblastos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Comunicação Celular , Membrana Celular/metabolismo , Proteínas Culina/genética , Células HEK293 , Humanos , Camundongos , Mioblastos/citologia , Proteínas do Tecido Nervoso/genética
5.
Cell ; 183(1): 46-61.e21, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941802

RESUMO

Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.


Assuntos
Proteínas de Transporte/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular , Células HEK293 , Homeostase , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mitocôndrias , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Trends Cell Biol ; 27(8): 568-579, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28528988

RESUMO

The growth of a metazoan body relies on a series of highly coordinated cell-fate decisions by stem cells which can undergo self-renewal, reversibly enter a quiescent state, or terminally commit to a cell specification program. To guide their decisions, stem cells make frequent use of ubiquitylation, a post-translational modification that can affect the activity, interaction landscape, or stability of stem cell proteins. In this review we discuss novel findings that have provided insight into ubiquitin-dependent mechanisms of stem cell control and revealed how an essential and highly conserved protein modification can shape metazoan development.


Assuntos
Processamento de Proteína Pós-Traducional , Células-Tronco/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Animais , Diferenciação Celular , Divisão Celular , Autorrenovação Celular , Humanos , Células-Tronco/citologia , Ubiquitina-Proteína Ligases/metabolismo
7.
Mol Biol Cell ; 27(7): 1170-80, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864629

RESUMO

Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca(2+)-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase-mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico
8.
Mol Cell ; 60(1): 1-2, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431022

RESUMO

In this issue of Molecular Cell, Heo et al. (2015) uncover a new mechanism of signal amplification during mitophagy through cooperative regulation of the TBK1 kinase and autophagy receptors.


Assuntos
Mitocôndrias/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos
9.
Curr Opin Cell Biol ; 25(4): 434-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23522446

RESUMO

Eukaryotic cells are divided into distinct membrane-bound organelles with unique identities and specialized metabolic functions. Communication between organelles must take place to regulate the size, shape, and composition of individual organelles, as well as to coordinate transport between organelles. The endoplasmic reticulum (ER) forms an expansive membrane network that contacts and participates in crosstalk with several other organelles in the cell, most notably the plasma membrane (PM). ER-PM junctions have well-established functions in the movement of small molecules, such as lipids and ions, between the ER and PM. Recent discoveries have revealed additional exciting roles for ER-PM junctions in the regulation of cell signaling, ER shape and architecture, and PM domain organization.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Eucariotos/citologia , Transdução de Sinais , Animais , Transporte Biológico , Membrana Celular/química , Retículo Endoplasmático/química , Eucariotos/química , Eucariotos/metabolismo , Humanos , Organelas/química , Organelas/metabolismo
10.
Dev Cell ; 23(6): 1129-40, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23237950

RESUMO

Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/ultraestrutura , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/genética , Fosfatidilinositóis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Resposta a Proteínas não Dobradas
11.
Cell ; 144(3): 389-401, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295699

RESUMO

Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Animais , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA