RESUMO
A current trend in healthcare research is to discover multifunctional compounds, able to interact with multiple biological targets, in order to simplify multi-drug therapies and improve patient compliance. The aim of this work was to outline the growing demand for innovative multifunctional compounds, achieved through the synthesis, characterisation and SAR evaluation of a series of 2-styrylbenzothiazole derivatives. The six synthesised compounds were studied for their potential as photoprotective, antioxidant, antiproliferative, and anti-inflammatory agents. In order to profile antioxidant activity against various radical species, in vitro DPPH, FRAP and ORAC assays were performed. UV-filtering activity was studied, first in solution and then in formulation (standard O/W sunscreen containing 3% synthesised molecules) before and after irradiation. Compound BZTst6 proved to be photostable, suitable for broad-spectrum criteria, and is an excellent UVA filter. In terms of antioxidant activity, only compound BZTst4 can be considered a promising candidate, due to the potential of the catechol moiety. Both also showed exceptional inhibitory action against the pro-inflammatory enzyme 5-lipoxygenase (LO), with IC50 values in the sub-micromolar range in both activated neutrophils and under cell-free conditions. The results showed that the compounds under investigation are suitable for multifunctional application purposes, underlining the importance of their chemical scaffolding in terms of different biological behaviours.
RESUMO
Supply chain waste gives rise to significant challenges in terms of disposal, making upcycling a promising and sustainable alternative for the recovery of bioactive compounds from by-products. Lignocellulosic by-products like STF231, which are derived from the medicinal plant extract industry, offer valuable compounds such as polyphenols and iridoids that can be recovered through upcycling. In an unprecedented study, we explored and compared conventional hydroethanolic extraction, ultrasound hydroethanolic extraction, and natural deep eutectic solvents-ultrasound extraction methods on STF231 to obtain extracts with antioxidant activity. The extraction profile of total polyphenols (TPCs) was measured using the Folin-Ciocalteu test and the antioxidant capacity of the extracts was tested with FRAP and DPPH assays. HPLC-UV was employed to quantify the phenolic and iridoid markers in the extracts. Additionally, the sustainability profile of the process was assessed using the green analytical procedure index (GAPI), AGREEprep, and analytical GREEnness metric approach (AGREE) frameworks. Our findings indicate that a choline chloride and lactic acid mixture at a 1:5 ratio, under optimal extraction conditions, resulted in extracts with higher TPC and similar antioxidant activity compared with conventional hydroethanolic extracts. The innovative aspect of this study lies in the potential application of sustainable upcycling protocols to a previously unexamined matrix, resulting in extracts with potential health applications.
RESUMO
Introduction: Lactic acid (LA) production from fossil resources is unsustainable owing to their depletion and environmental concerns. Thus, this study aimed to optimize the production of LA by Lactobacillus casei in a cultured medium containing fruit wastes (FWs) from agro-industries and second cheese whey (SCW) from dairy production, supplemented with maize steep liquor (MSL, 10% v/v) as the nitrogen source. Methods: The FWs were selected based on seasonal availability [early summer (early ripening peach), full summer (melon), late summer (pear), and early autumn (apple)] and SCW as annual waste. Small-scale preliminary tests as well as controlled fermenter experiments were performed to demonstrate the potential of using various food wastes as substrates for LA fermentation, except for apple pomace. Results and discussion: A 5-cycle repeated batch fermentation was conducted to optimize waste utilization and production, resulting in a total of 180.56 g/L of LA with a volumetric productivity of 0.88 g/Lâh. Subsequently, mechanical filtration and enzymatic hydrolysis were attempted. The total amount of LA produced in the 5-cycle repeated batch process was 397.1 g/L over 288 h, achieving a volumetric productivity of 1.32 g/Lâh. These findings suggest a promising biorefinery process for low-cost LA production from agri-food wastes.
RESUMO
The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: ⢠Olive leaves slurry as it did not allow L. casei to ferment. ⢠High concentrations of polyphenols inhibit fermentation of L. casei. ⢠Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.
Assuntos
Fermentação , Ácido Láctico , Lacticaseibacillus casei , Olea , Azeite de Oliva , Folhas de Planta , Ácido Láctico/metabolismo , Lacticaseibacillus casei/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Azeite de Oliva/metabolismo , Glucose/metabolismo , Hidrólise , Resíduos Industriais , Polifenóis/metabolismo , BiomassaRESUMO
BACKGROUND: Benzalkonium chloride (BAC) is a quaternary ammonium compound (QAC), that can be found in a wide variety of household products-from disinfectants to medicaments and home fragrances-but also professional products. In pets, cats have long been reported as more sensitive than dogs to QACs; in fact, signs of irritation such as oral ulcerations, stomatitis and pharyngitis can be observed after contact with concentrations of 2% or lower. In a review of 245 cases of BAC exposure in cats, reported by the Veterinary Poisons Information Service (United Kingdom) only 1.2% of the cases died or were euthanized. Nevertheless, BAC toxidromes in cats can result in transitory CNS and respiratory distress, as well as severe mucosal and cutaneous lesions. Currently, only a few reports are available concerning BAC poisoning in this species. CASE PRESENTATION: A 4 month-old kitten presented with severe glossitis, lameness in the hindlimbs and episodes of vomiting and diarrhoea. The cause was unknown until the owners reported use of a BAC-containing mould remover (5%) 4 days later. The patient developed severe oral burns requiring a pharyngeal tube for feeding and severe cutaneous chemical burns. The kitten was managed with supportive therapy and required hospitalization for 10 days. The symptoms disappeared completely 3 weeks after exposure. CONCLUSIONS: BAC is a very common compound contained in several household and professional products but, to the best of our knowledge, no previous case had been reported in Italy. We hope that this report will help raise awareness on the hazards of BAC products for cats in both domestic and work contexts.
Assuntos
Compostos de Benzalcônio , Desinfetantes , Gatos , Animais , Feminino , Cães , Compostos de Benzalcônio/toxicidade , Compostos de Amônio Quaternário , ItáliaRESUMO
This study reports the first detection of the marine neurotoxin pinnatoxin-G (PnTX-G) in clams collected in the northwestern Adriatic Sea (Italy). It also represents the first report of the potential toxin-producing dinoflagellate, Vulcanodinium rugosum, in Italian seas. This result, from the coasts of the Emilia-Romagna Region, indicates a successful colonization process, reflecting conditions in France where V. rugosum was initially documented. In this case, the concentration of PnTXs was very low, making further sampling necessary to fully understand the extent of the phenomenon. Discussions on the need to obtain more data to support a proper risk assessment and the need to implement a monitoring program that includes emerging marine biotoxins are also included.
Assuntos
Alcaloides , Dinoflagellida , Compostos de Espiro , Humanos , França , ItáliaRESUMO
Diesel particulate matter is one of the most dangerous environmental stressors affecting human health. Many plant-derived compounds with antioxidant and anti-inflammatory properties have been proposed to protect the skin from pollution damage. Curcumin (CUR) has a plethora of pharmacological activities, including anticancer, antimicrobial, anti-inflammatory and antioxidant. However, it has low bioavailability due to its difficult absorption and rapid metabolism and elimination. CUR encapsulation in nanotechnological systems and its combination with biopotentiators such as piperine (PIP) can improve its pharmacokinetics, stability and activity. In this study, ethosomes (ETs) were investigated for CUR and PIP delivery to protect the skin from damage induced by diesel particulate matter. ETs were produced by different strategies and characterized for their size distribution by photon correlation spectroscopy, for their morphology by transmission electron microscopy, and for their drug encapsulation efficiency by high-performance liquid chromatography. Franz cells enabled us to evaluate in vitro the drug diffusion from ETs. The results highlighted that ETs can promote the skin permeation of curcumin. The studies carried out on their antioxidant activity demonstrated an increase in the antioxidant power of CUR using a combination of CUR and PIP separately loaded in ETs, suggesting their possible application for the prevention of skin damage due to exogenous stressors. Ex vivo studies on human skin explants have shown the suitability of drug-loaded ETs to prevent the structural damage to the skin induced by diesel engine exhaust exposure.
RESUMO
A comparative study on essential oils extracted from Mentha suaveolens Ehrh. from Italy is reported. Two extraction procedures were investigated: hydrodistillation and steam distillation, carried out as a continuous and fractionated procedure. Fresh and dried plant material from two harvests was used. The hydrodistillation method yielded a higher amount of essential oil. The dried plant was significantly richer in essential oil per kg of starting plant material. Gas chromatography-mass spectrometry analysis of 112 samples showed that the essential oils belong to the piperitenone oxide-rich chemotype. In addition, piperitenone, p-cymen-8-ol, and limonene were among the most abundant compounds in the different samples. A higher amount of piperitenone oxide was obtained by hydrodistillation, while steam distillation gave a higher percentage of piperitenone and limonene. The essential oils were characterized for their anti-Candida albicans activity; higher potency was observed for the samples rich in piperitenone oxide, with MIC values ranging from 0.39 to 0.78 mg·mL-1 (0.039% and 0.078% p/v). The results of this work provide a deep insight into the methodology of essential oil extraction and the associated chemical variability of M. suaveolens Ehrh. Some of the essential oils are potent against C. albicans and could be considered for potential use in therapy.
Assuntos
Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Candida , Limoneno , Mentha/química , Destilação , Vapor , Candida albicansRESUMO
A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.
Assuntos
Antígenos de Neoplasias , Anidrase Carbônica II , Humanos , Anidrase Carbônica II/metabolismo , Relação Estrutura-Atividade , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica I/metabolismo , Isoformas de Proteínas , Sulfanilamidas , Inibidores da Anidrase Carbônica/farmacologia , Estrutura MolecularRESUMO
In recent years, a reversal of the global economic framework has been taking place: from the linear model, there has been a gradual transition to a circular model where by-products from the agri-food industry are taken and transformed into value products (upcycling) rather than being disposed of. Olive tree pruning represents an important biomass currently used for combustion; however, the leaf part of the olive tree is rich in phenolic substances, including hydroxytyrosol. Mill wastewater is also discarded, but it still contains high amounts of hydroxytyrosol. In this study, cosmetic and food supplement formulations were prepared using biophenols extracted from leaves and wastewater and were tested in a placebo-controlled study on healthy volunteers using a combined cosmetic and food supplement treatment. A significant improvement in skin health indicators (collagen density, elasticity, etc.) and a 17% improvement against Photo-induced Irritative Stimulus was observed.
RESUMO
In this study, we examined and compared two different lipid-based nanosystems (LBNs), namely Transferosomes (TFs) and Monoolein Aqueous Dispersions (MADs), as delivery systems for the topical application of Ferulic Acid (FA), an antioxidant molecule derived from natural sources. Our results, as demonstrated through Franz-cell experiments, indicate that the LBNs produced with poloxamer 188 in their composition create a multilamellar system. This system effectively controls the release of the drug. Nonetheless, we found that the type of non-ionic surfactant can impact the drug release rate. Regarding FA diffusion from the MAD, this showed a lower diffusion rate compared with the TF. In terms of an in vivo application, patch tests revealed that all LBN formulations tested were safe when applied under occlusive conditions for 48 h. Additionally, human skin biopsies were used to determine whether FA-containing formulations could influence skin tissue morphology or provide protection against O3 exposure. Analyses suggest that treatment with TFs composed of poloxamer 188 and MAD formulations might protect against structural skin damage (as observed in hematoxylin/eosin staining) and the development of an oxidative environment (as indicated by 4-hyroxinonenal (4HNE) expression levels) induced by O3 exposure. In contrast, formulations without the active ingredient did not offer protection against the detrimental effects of O3 exposure.Inizio modulo.
RESUMO
Xanthomonas campestris pv. campestris is the causal agent of black rot in crucifers, a plant disease with significant economic impact. Xanthomonadaceae is a large family of Gram-negative bacteria that cause symptoms by blocking water flow in plants by invading the xylem. To accomplish this, the main mechanism the bacteria use to adapt to environmental changes and colonize tissues is biofilm formation. In recent years, growing interest in natural antimicrobial compounds has led to the study of different phytocomplexes derived from plants. In this work, Moringa oleifera was selected, as its leaves are rich in phenols, essential oils, and vitamins that exert antibacterial activity. X. campestris pv. campestris biofilm, one of its major virulence factors, was studied. Biofilm formation and removal were analyzed on abiotic and biotic surfaces with and without M. oleifera leaf extracts. The data from the analysis show that Moringa oleifera leaf extracts and single phenols were able to inhibit biofilm growth on abiotic surfaces, but the activity of the whole phytocomplex was significantly higher compared to that of individual phenols. The effect of Moringa oleifera extracts on cabbage leaves in vivo was also found to be very important, as scanning electron microscopy showed that treatment with the extracts led to clear unblocking of the xylem, implying many advantages for use in black rot control.
RESUMO
Hyaluronic acid (HA) is a polymer with unique biological properties that has gained in interest over the years, with applications in pharmaceutical, cosmetic, and biomedical fields; however, its widespread use has been limited by its short half-life. Therefore, a new cross-linked hyaluronic acid was designed and characterized using a natural and safe cross-linking agent, such as arginine methyl ester, which provided improved resistance to enzymatic action, as compared to the corresponding linear polymer. The antibacterial profile of the new derivative was shown to be effective against S. aureus and P. acnes, making it a promising candidate for use in cosmetic formulations and skin applications. Its effect on S. pneumoniae, combined with its excellent tolerability profile on lung cells, also makes this new product suitable for applications involving the respiratory tract.
RESUMO
The understanding of the use of Magnolia officinalis L. (Magnoliaceae) as a possible dietary supplement for supporting the treatment of airway pathologies might be of clinical interest. Two commercially available bark extracts (M. officinalis extract [MOE]) were characterized by quantitation in honokiol and magnolol content by means of high-performance liquid chromatography with UV detection. MOE effects, as well as those of the reference compounds per se, on some targets connected to airway pathologies (antibacterial- and lung and trachea relaxing- activities) were investigated. Results showed that MOE possessed interesting antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This was accompanied by a spasmolytic and antispasmodic activity, possibly owing to its ability to concurrently modulate different targets such as H1 -, ß2 - and muscarinic receptors and l-type calcium channels involved in bronchodilation. All these effects were directly related to the MOE content in honokiol and magnolol. In conclusion, the properties of MOE highlighted here strongly encourage its application as dietary supplement in the treatment of airway diseases.
Assuntos
Lignanas , Magnolia , Doenças Respiratórias , Humanos , Magnolia/química , Medicina Tradicional Chinesa , Casca de Planta/química , Lignanas/farmacologia , Compostos de Bifenilo , Extratos Vegetais/químicaRESUMO
This research investigated plant extracts as a source of potential new actives in the nutritional, cosmetic, and pharmaceutical fields. Moringa oleifera, which is extensively known for its nutritional properties, has been investigated in this work by preparation, characterization, and evaluation of the antioxidant (FRAP, DPPH, ORAC, and PCL test), antifungal, photoprotective, and cytotoxicity profile against human melanoma Colo38 cell line of two different extracts (hydroalcoholic and methanolic) and one infusion of dry leaves collected from Paraguay in four distinct harvest times (February, March, April, and May 2017). The outcomes of this study highlight Moringa oleifera as a potential ally to counteract skin aging and oxidative stress, as indicated by the favorable antioxidant profile of the extracts and infusions of Paraguay, which was, in all cases, superior to that provided by the same plant species when collected from Senegal. Moreover, some samples were more efficient in preventing the photodegradation of UVA filter butyl methoxydibenzoylmethane (Avobenzone) compared to commercial filters, thus suggesting an interesting future role as natural additives in sunscreens.
RESUMO
Cortisone is a metabolite belonging to the corticosteroid class that is used pharmaceutically directly as a drug or prodrug. In addition to its large consumption, its use is linked to several side effects, so pharmaceutical research aims to develop effective drugs with low or no side effects, alternative compounds to cortisone are part of an active investment in ongoing research on drug discovery. Since biotransformation can be considered a source of new molecules with potential therapeutic use, the present work focuses on a preliminary in vitro study aimed at evaluating the mutagenic, anti-inflammatory, antioxidant and neuroprotective activity of SCA and SCB molecules obtained from the biotransformation of cortisone using Rh. Rhodnii strain DSM 43960. The results obtained are very encouraging due to the safety of biotransformed compounds with reference to genotoxicity checked by Ames test, to the very high antioxidant capacity and to the anti-inflammatory activity. In fact, thecompounds inhibited both the TNFα-stimulated expression and secretion of NFkB target cytokines, and COX activity, and can activate the glucocorticoid receptor. Finally SCA and SCB exhibited neuroprotective properties.
Assuntos
Cortisona , Antioxidantes/farmacologia , Biotransformação , Esteroides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêuticoRESUMO
In recent years, the issue of coral bleaching has led to restrictions in some tropical locations (i.e., Palau, Hawaii, etc.) on the use of some organic UV sunscreen filters, such as oxybenzone and ethyl hexyl methoxycinnamate. In contrast, ZnO is considered safe for marine environments and thus is often used without considering its photocatalytic and oxidative activities related to the generation of O2â¢- and HOâ¢. Moreover, ZnO needs to be used in combination with other filters to reach higher protection factors. Thus, the study of its interaction with formulations and with organic filters is important in sunscreen technology for the development of safer by-design products. In this work, the photocatalytic activity of zinc oxides with different surface areas (30, 25 and 9 m2/g) and their interaction with selected organic sunscreen filters were investigated. In particular, the ZnO photocatalytic kinetics were studied following the photodegradation of Acid Blue 9 (AB9) observing a first-order reaction with a chemical regime. Our evaluations of the selective inhibitions by hvb+ and HO⢠demonstrated a substantial predominance of the hydroxide radicals in the expression of the photocatalysis, a trend that was also confirmed by the irradiation of ZnO in an ethanolic solution. Indeed, the formulations containing both ZnO and organic filters defined as "safe" for coral reefs (i.e., Diethylamino Hydroxybenzoyl Hexyl Benzoate, DHHB, and Ethylhexyl Triazone, EHT) showed a non-negligible photocatalytic oxidation and thus the combination was underlined as safe to use.
RESUMO
Alpha-phellandrene is a very common cyclic monoterpene found in several EOs, which shows extensive biological activities. Therefore, the main focus of the present systematic review was to provide a comprehensive and critical analysis of the state of the art regarding its biological activities and pharmaceutical and food applications. In addition, the study identified essential oils rich in alpha-phellandrene and summarized their main biological activities as a preliminary screening to encourage subsequent studies on their single components. With this review, we selected and critically analyzed 99 papers, using the following bibliographic databases: PubMed, SciELO, Wiley and WOS, on 8 July 2022. Data were independently extracted by four authors of this work, selecting those studies which reported the keyword "alpha-phellandrene" in the title and/or the abstract, and avoiding those in which there was not a clear correlation between the molecule and its biological activities and/or a specific concentration from its source. Duplication data were removed in the final article. Many essential oils have significant amounts of alpha-phellandrene, and the species Anethum graveolens and Foeniculum vulgare are frequently cited. Some studies on the above-mentioned species show high alpha-phellandrene amounts up to 82.1%. There were 12 studies on alpha-phellandrene as a pure molecule showed promising biological functions, including antitumoral, antinociceptive, larvicidal and insecticidal activities. There were 87 research works on EOs rich in alpha-phellandrene, which were summarized with a focus on additional data concerning potential biological activities. We believe this data is a useful starting point to start new research on the pure molecule, and, in particular, to distinguish between the synergistic effects of the different components of the OEs and those due to alpha-phellandrene itself. Toxicological data are still lacking, requiring further investigation on the threshold values to distinguish the boundary between beneficial and toxic effects, i.e., mutagenic, carcinogenic and allergenic. All these findings offer inspiration for potential applications of alpha-phellandrene as a new biopesticide, antimicrobial and antitumoral agent. In particular, we believe our work is of interest as a starting point for further studies on the food application of alpha-phellandrene.
RESUMO
There are only a limited number of molecules in a cosmetic formulation, which can passively cross the stratum corneum and be absorbed into the skin layers. However, some actives should never cross the skin in large concentrations due to their potential for side effects, for example, sunscreens. Artificial intelligence is gaining an increasing role as a predictive tool, and in this regard, we selected the Formulating for Efficacy® Software to forecast the changes in bioavailability of selected topical cosmetic compounds. Using the Franz diffusion cell methodology, various oils were selected as those with low release capability, and these were compared to those suggested by the software in Benzophenone-3-containing formulations. The software was able to predict the lipophilic phases, which, if utilized in the emulsion, were stable and sometimes even more pleasant in appearance and consistency than the reference emulsions prepared by the formulator. To date, however, Formulating for Efficacy® Software still has limitations as far as predicting the hydrophilic phase, as well as not being able to choose the emulsifier or the preservative system.
RESUMO
A further investigation aiming to generate new potential antitumor agents led us to synthesize a new series of twenty-two compounds characterized by the presence of the 7-(3',4',5'-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine pharmacophore modified at its 2-position. Among the synthesized compounds, three were significantly more active than the others. These bore the substituents p-toluidino (3d), p-ethylanilino (3h) and 3',4'-dimethylanilino (3f), and these compounds had IC50 values of 30-43, 160-240 and 67-160 nM, respectively, on HeLa, A549 and HT-29 cancer cells. The p-toluidino derivative 3d was the most potent inhibitor of tubulin polymerization (IC50: 0.45 µM) and strongly inhibited the binding of colchicine to tubulin (72% inhibition), with antiproliferative activity superior to CA-4 against A549 and HeLa cancer cell lines. In vitro investigation showed that compound 3d was able to block treated cells in the G2/M phase of the cell cycle and to induce apoptosis following the intrinsic pathway, further confirmed by mitochondrial depolarization and caspase-9 activation. In vivo experiments conducted on the zebrafish model showed good activity of 3d in reducing the mass of a HeLa cell xenograft. These effects occurred at nontoxic concentrations to the animal, indicating that 3d merits further developmental studies.