RESUMO
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Assuntos
Aorta , Aterosclerose , Homocisteína , Hipercolesterolemia , Animais , Coelhos , Aterosclerose/patologia , Aterosclerose/metabolismo , Homocisteína/sangue , Aorta/patologia , Aorta/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Masculino , Colina/administração & dosagem , Modelos Animais de Doenças , Elastina/metabolismo , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologiaRESUMO
PURPOSE: Recommended pharmacotherapy for hypothyroidism in Hashimoto's thyroiditis (HT) is oral supplementation with levothyroxine (LT-4). However, serum thyrotropin (TSH) levels within normal range are not consistently achieved with LT-4 medication. PATIENTS AND METHODS: We report on 35 HT patients with LT-4 therapy in this retrospective evaluation. In general, we recommend that a maximum of two sips of water, which would then amount to < 50 mL, be ingested at the same time as LT-4. We report on follow up examinations measuring TSH and antibodies against thyroid peroxidase (TPOAb) after 6 months to five years. RESULTS: After median time of 643 days (range 98-1825) we found in 35 HT patients a statistical significant reduction of serum TSH (p < 0.001) and TPOAb (p = 0.006). The patients median body weight was 71 kg (range 48-98) and a daily LT-4 dosage was used with median 69.1 µg (range 25-150). This results in a daily LT-4 dose of median 1.01 µg/kg bodyweight (range 0.3-2.3). CONCLUSIONS: The reduction of water ingestion to a maximum of two sips, which is <50 mL, combined with LT-4 supplementation helps to achieve euthyroidism in HT. In addition, it reduces the L-T4 medication dosage needed to lower TSH serum levels and decreases TPO antibodies in HT.
Assuntos
Doença de Hashimoto , Tireotropina , Tiroxina , Humanos , Doença de Hashimoto/tratamento farmacológico , Doença de Hashimoto/sangue , Tiroxina/administração & dosagem , Tiroxina/uso terapêutico , Tiroxina/sangue , Feminino , Pessoa de Meia-Idade , Tireotropina/sangue , Estudos Retrospectivos , Masculino , Adulto , Idoso , Iodeto Peroxidase/imunologia , Autoanticorpos/sangue , ÁguaRESUMO
The global dissemination of SARS-CoV-2 resulted in the emergence of several variants, including Alpha, Alpha + E484K, Beta, and Omicron. Our research integrated the study of eukaryotic translation factors and fundamental components in general protein synthesis with the analysis of SARS-CoV-2 variants and vaccination status. Utilizing statistical methods, we successfully differentiated between variants in infected individuals and, to a lesser extent, between vaccinated and non-vaccinated infected individuals, relying on the expression profiles of translation factors. Additionally, our investigation identified common causal relationships among the translation factors, shedding light on the interplay between SARS-CoV-2 variants and the host's translation machinery.
RESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. A main cause is the obesogenic, so-called Western lifestyle. NAFLD follows a long, unperceived course, and ends potentially fatally. Early diagnosis of aggressive subtypes saves lives. So far, non-invasive means of detection are limited. A better understanding of the pathogenic interplay among insulin resistance, immune inflammation, microbiome, and genetic background is important. Metabolomics may give insight into these interlaced processes. METHODS: In this study, we measured bile acids (BA) in the plasma of adult NAFLD and alcohol-associated liver disease (ALD) patients and healthy controls with targeted mass spectrometry. We focused on gender-related bile acid production pathology in NAFLD and ALD. RESULTS: Compared to healthy controls, women with NAFLD had significantly higher concentrations of total BA, total primary BA, total cholic (CA), total chenodeoxycholic (CDCA), total glycine-conjugated, and total non-12-a-OH BA. Concerning subtypes, glycocholic (GCA) and glycochenodeoxycholic (GCDCA), BA were elevated in women with NAFLD. In contrast, men with NAFLD had no significantly altered total BA fractions. However, the subtypes GCA, glycodeoxycholic (GDCA), glycolithocholic (GLCA), lithocholic (LCA), taurolithocholic (TLCA), and tauroursodeoxycholic acid (TUDCA) were elevated, while CA was significantly decreased. In NAFLD, except ursodeoxycholic acid (UDC), all total BA correlated significantly positively in both sexes with the ELF score, while in ALD, only males showed significant correlations exceptive for total UDC BA. In NAFLD, total BA, total primary BA, total secondary BA, total free secondary BA, total CA, total CDCA, total taurine conjugated, total glycine conjugated, total 12-a-OH, and total non-12-a-OH were significantly higher in cases of a high enhanced liver fibrosis (ELF) score above 9.8. In ALD, total UDC was additionally elevated. Between NAFLD with and without NASH, we found no significant differences. CONCLUSION: Our data show gender-specific bile acid profiles in NAFLD and markedly different BA patterns in ALD. Women with NAFLD had more severe cholestasis. Men may better compensate fat storage-driven bile acid dynamics, indicated by higher levels of taurine-conjugated BA, which associate with beneficial metabolic functions.
Assuntos
Fabaceae , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Adulto , Masculino , Humanos , Feminino , Ácidos e Sais Biliares , Ácido Ursodesoxicólico , Glicina , TaurinaRESUMO
OBJECTIVES: Telomeres are DNA-protein complexes at the ends of linear chromosomes that protect against DNA degradation. Telomeres shorten during normal cell divisions and therefore, telomere length is an indicator of mitotic-cell age. In humans, telomere shortening is a potential biomarker for disease risk, progression and premature death. Physical activity has been associated with longer leukocyte telomere length (LTL) in some studies. In the current study the relationship between LTL, thigh muscle mass and adipose tissue distribution was explored. METHODS: We performed anthropometric measurements and magnetic resonance imaging (MRI) measurements of the thigh in 149 healthy subjects (77 male, 72 female). LTL was measured using qPCR. Additionally, the subjects answered a questionnaire concerning their training behaviour. RESULTS: In male subjects, LTL was significantly associated with thigh muscle mass, independent of age and body mass index (p=0.006). In addition, a slight association of LTL with weekly endurance units in the male group was found. These relations could not be observed in females. CONCLUSIONS: In conclusion, we observed a sex-specific association of LTL and thigh muscle mass in healthy males. The reason of this sex-specific association is currently unclear, but could be related to different training effects and/or hormonal pathways in men and women.
Assuntos
Telômero , Coxa da Perna , Humanos , Masculino , Feminino , Telômero/genética , Leucócitos , Músculos , DNA/metabolismoRESUMO
COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.
RESUMO
Symptoms of the disorders across the irritable bowel syndrome (IBS) spectrum include several different, usually postprandial, abdominal complaints. Up to date, dietary treatments of the IBS have neither been personalized nor diagnosed with sufficient scientific evidence. They have mostly been treated using 'one-size-fits-all' approaches. Such include exclusion diets, a low fermentable oligosaccharides, disaccharides, monosaccharides and polyols diet, and gluten-free diets, lactose-free diets, a diet recommended by the UK National Institute for Health and Care Excellence, and a wheat-free diet. The exact pathophysiology of IBS disorders across the spectrum is still unclear. However, the symptom profile of IBS spectrum disorders seems similar to that of food intolerance/malabsorption syndromes. Celiac disease, fructose malabsorption, histamine intolerance and lactose intolerance represent food intolerance/malabsorption disorders based on the indigestion of sugars and/or proteins. Helicobacter pylori infection may potentially promote the development of IBS and, when facing a case of IBS-like symptoms, a search for intolerance/malabsorption and H. pylori should be added to find the correct treatment for the respective patient. This review will discuss why the 'one-size-fits-all' dietary approach in the treatment of complaints across the IBS spectrum cannot be successful. Hence, it will provide an overview of the most common overall dietary approaches currently used, and why those should be discouraged. Alternatively, a noninvasive diagnostic workup of the pathophysiologic factors of food intolerance/malabsorption in each patient with symptoms of the IBS spectrum is suggested. Additionally, if H. pylori is found, eradication therapy is mandatory, and if food intolerance/malabsorption is detected, an individual and personalized dietary intervention by a registered dietician is recommended.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Síndrome do Intestino Irritável , Síndromes de Malabsorção , Humanos , Síndrome do Intestino Irritável/terapia , Intolerância AlimentarRESUMO
Functional abdominal pain disorders (FAPDs) are among the most common types of chronic pain disorders in children. FAPD symptoms are characterized by chronic abdominal pain and changed bowel movements. The pathophysiology of FAPDs in children is unknown, but these conditions may have an imprecise clinical overlap to food intolerance/malabsorption. We report on 51 consecutive children (23/28 males/females; median age 15.3 years) with investigated FAPDs from 2017 to 2022 in this retrospective pilot study. Small intestinal biopsies in children demonstrated the association of lactase and diamine oxidase (DAO), which prompted us to perform hydrogen (H2) breath tests for lactose intolerance (LIT) and determine serum DAO for the evaluation of histamine intolerance (HIT) in pediatric patients with FAPDs. To complete the food intolerance/malabsorption evaluation tests, we included a search for antibodies against tissue transglutaminase to find celiac disease (CD), performed H2 breath tests to detect fructose malabsorption (FM), and conducted a search for IgA antibodies against H. pylori infection. The results demonstrate that all 51 children evaluated were diagnosed with food intolerance/malabsorption and/or various combinations thereof. Seven children showed FM, eight of the children had HIT, and eight children had LIT. The other children had combinations: thirteen children (25.5%) had HIT and LIT, seven children (9.8%) had FM with HIT, five children (13.7%) had FM and LIT, and three children (5.9%) had a triple combination of FM, HIT, and LIT. By describing this method of personalized investigation for food intolerance/malabsorption in children with FAPDs, we demonstrate that functional abdominal pain disorders may be associated with food intolerance/malabsorption. After such diagnosis in this pediatric population, a registered dietitian helped to establish a reduction and/or exclusion diet individually tailored to their symptomatology.
RESUMO
INTRODUCTION: The relationship between sodium glucose co-transporter 2 inhibitors (SGLT2i) and trimethylamine N-oxide (TMAO) following acute myocardial infarction (AMI) is not yet explored. METHODS: In this secondary analysis of the EMMY trial (ClinicalTrials.gov registration: NCT03087773), changes in serum TMAO levels were investigated in response to 26-week Empagliflozin treatment following an AMI compared to the standard post-MI treatment. Additionally, the association of TMAO changes with clinical risk factors and cardiorenal biomarkers was assessed. RESULTS: The mean age of patients (N = 367) was 57 ± 9 years, 82% were males, and 14% had type 2 diabetes. In the Empagliflozin group, the median TMAO value was 2.62 µmol/L (IQR: 1.81) at baseline, 3.74 µmol/L (2.81) at 6 weeks, and 4.20 µmol/L (3.14) at 26 weeks. In the placebo group, the median TMAO value was 2.90 µmol/L (2.17) at baseline, 3.23 µmol/L (1.90) at 6 weeks, and 3.35 µmol/L (2.50) at 26 weeks. The serum TMAO levels increased significantly from baseline to week 6 (coefficient: 0.233; 95% confidence interval 0.149-0.317, p < 0.001) and week 26 (0.320, 0.236-0.405, p < 0.001). The average increase in TMAO levels over time (pinteraction = 0.007) was significantly higher in the Empagliflozin compared to the Placebo group. Age was positively associated with TMAO, whereas eGFR and LVEF were negatively associated with TMAO. CONCLUSIONS: Our results are contrary to existing experimental studies that showed the positive impact of SGLT2i on TMAO precursors and cardiovascular events. Therefore, we recommend further research investigating the impact of SGLT2i therapy on acute and long-term changes in TMAO in cardiovascular cohorts.
Assuntos
Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Infarto do Miocárdio/complicações , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , ÓxidosRESUMO
BACKGROUND: SGTL2-inhibitors are a cornerstone in the treatment of heart failure, but data on patients with acute myocardial infarction (AMI) is limited. The EMMY trial was the first to show a significant reduction in NTproBNP levels as well as improved cardiac structure and function in post-AMI patients treated with Empagliflozin compared to placebo. However, data on the potential impact of SGLT2-inhibitors on inflammatory biomarkers after AMI are scarce. MATERIALS AND METHODS: The EMMY trial is an investigator-initiated, multicentre, double-blind, placebo-controlled trial, which enrolled patients after AMI, receiving either 10 mg Empagliflozin once daily or placebo over a period of 26 weeks on top of standard guideline-recommended therapy starting within 72 h after percutaneous coronary intervention. In this post-hoc subgroup analysis of the EMMY trial, we investigated inflammatory biomarkers of 374 patients. The endpoints investigated were the mean change in inflammatory biomarkers such as high-sensitive c-reactive protein (hsCRP), interleukin-6 (IL-6), neutrophils, leukocytes, neutrophile/lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) from baseline to 26 weeks. RESULTS: Baseline median (interquartile ranges) IL-6 was 17.9 pg/mL (9.0-38.7), hsCRP 18.9 mg/L (11.2-37.1), neutrophil count 7.9 x G/L (6.2-10.1), leukocyte count 10.8 x G/L (9.1-12.8) and neutrophile/lymphocyte ratio (NLR) of 0.74 (0.67-0.80). At week 26, a significant mean reduction in inflammatory biomarkers was observed, being 35.1 ± 3.2% (p < 0.001) for IL-6, 57.4 ± 0.7% (p < 0.001) for hsCRP, 26.1 ± 0.7% (p < 0.001) for neutrophils, 20.5 ± 0.6% (p < 0.001) for leukocytes, 10.22 ± 0.50% (p < 0.001) for NLR, and - 2.53 ± 0.92% for PLR (p = 0.006) with no significant difference between Empagliflozin and placebo treatment. CONCLUSION: Trajectories of inflammatory biomarkers showed a pronounced decline after AMI, but Empagliflozin treatment did not impact this decline indicating no central role in blunted systemic inflammation mediating beneficial effects.
Assuntos
Infarto do Miocárdio , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Transportador 2 de Glucose-Sódio , Proteína C-Reativa/metabolismo , Interleucina-6/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/tratamento farmacológico , Biomarcadores , Compostos Benzidrílicos/efeitos adversosRESUMO
BACKGROUND: Several blood biomarkers have been identified as predictors for poor outcome after ischemic stroke. However, recent studies mainly focused on single or experimental biomarkers and considered rather short follow-up intervals limiting their value for daily clinical practice. We, therefore, aimed to compare various clinical routine blood biomarkers for their predictive value on post-stroke mortality over a 5-year follow-up period. PATIENTS AND METHODS: This data analysis of a prospective single-center study included all consecutive ischemic stroke patients admitted to the stroke unit of our university hospital over a 1-year period. Various blood biomarkers of inflammation, heart failure, metabolic disorders, and coagulation were analyzed from standardized routine blood samples collected within 24 h of hospital admission. All patients underwent a thorough diagnostic workup and were followed for 5 years post-stroke. RESULTS: Of 405 patients (mean age: 70.3 years), 72 deceased (17.8%) during the follow-up period. While various routine blood biomarkers were associated with post-stroke mortality in univariable analyses, only NT-proBNP remained an independent predictor (adjusted odds ratio 5.1; 95% CI 2.0-13.1; p < 0.001) for death after stroke. NT-proBNP levels ⩾794 pg/mL (n = 169, 42%) had a sensitivity of 90% for post-stroke mortality with a negative predictive value of 97% and was additionally associated with cardioembolic stroke and heart failure (each p ⩽ 0.05). CONCLUSION: NT-proBNP represents the most relevant routine blood-based biomarker for the prediction of long-term mortality after ischemic stroke. Increased NT-proBNP levels indicate a vulnerable subgroup of stroke patients in which early and thorough cardiovascular assessment and consistent follow-ups could improve outcome after stroke.
Assuntos
Insuficiência Cardíaca , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Idoso , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico , Biomarcadores , Insuficiência Cardíaca/diagnósticoRESUMO
Pancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment. We used a 3D culture of human pancreatic ductal adenocarcinoma cell lines to investigate a potential new treatment approach using superparamagnetic iron oxide nanoparticles (SPIONs) as a drug delivery system for mitoxantrone (MTO), a chemotherapeutic agent. We established a PaCa DD183 cell line and generated PANC-1SMAD4 (-/-) cells by using the CRISPR-Cas9 system, differing in a prognostically relevant mutation in the TGF-ß pathway. Afterwards, we formed spheroids using PaCa DD183, PANC-1 and PANC-1SMAD4 (-/-) cells, and analyzed the uptake and cytotoxic effect of free MTO and MTO-loaded SPIONs by microscopy and flow cytometry. MTO and SPION-MTO-induced cell death in all tumor spheroids in a dose-dependent manner. Interestingly, spheroids with a SMAD4 mutation showed an increased uptake of MTO and SPION-MTO, while at the same time being more resistant to the cytotoxic effects of the chemotherapeutic agents. MTO-loaded SPIONs, with their ability for magnetic drug targeting, could be a future approach for treating pancreatic ductal adenocarcinomas.
RESUMO
Inflammatory bowel disease (IBD) involves two clinically defined entities, namely Crohn's disease and ulcerative colitis. Fecal calprotectin (FCAL) is used as a marker to distinguish between organic IBD and functional bowel disease in disorders of the irritable bowel syndrome (IBS) spectrum. Food components may affect digestion and cause functional abdominal disorders of the IBS spectrum. In this retrospective study, we report on FCAL testing to search for IBD in 228 patients with disorders of the IBS spectrum caused by food intolerances/malabsorption. Included were patients with fructose malabsorption (FM), histamine intolerance (HIT), lactose intolerance (LIT), and H. pylori infection. We found elevated FCAL values in 39 (17.1%) of 228 IBS patients with food intolerance/malabsorption and H. pylori infection. Within these, fourteen patients were lactose intolerant, three showed fructose malabsorption, and six had histamine intolerance. The others had combinations of the above conditions: five patients had LIT and HIT, two patients had LIT and FM, and four had LIT and H. pylori. In addition, there were individual patients with other double or triple combinations. In addition to LIT, IBD was suspected in two patients due to continuously elevated FCAL, and then found via histologic evaluation of biopsies taken during colonoscopy. One patient with elevated FCAL had sprue-like enteropathy caused by the angiotensin receptor-1 antagonist candesartan. When screening for study subjects concluded, 16 (41%) of 39 patients with initially elevated FCAL agreed to voluntarily control FCAL measurements, although symptom-free and -reduced, following the diagnosis of intolerance/malabsorption and/or H. pylori infection. After the initiation of a diet individualized to the symptomatology and eradication therapy (when H. pylori was detected), FCAL values were significantly lowered or reduced to be within the normal range.
Assuntos
Intolerância à Frutose , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Intolerância à Lactose , Síndromes de Malabsorção , Humanos , Síndrome do Intestino Irritável/diagnóstico , Intolerância Alimentar , Complexo Antígeno L1 Leucocitário , Estudos Retrospectivos , Histamina , Doenças Inflamatórias Intestinais/diagnóstico , Intolerância à Lactose/diagnóstico , Intolerância à Frutose/diagnóstico , Dieta , Frutose , FezesRESUMO
Plasma membrane cholesterol is required for proper trafficking and localization of receptors that facilitate severe acute respiratory syndrome coronavirus 2 infection. High-density lipoproteins (HDL) mobilize plasma membrane cholesterol, and HDL-cholesterol levels are associated with the severity of COVID-19 disease and mortality. However, HDL-cholesterol levels poorly reflect the function of this complex family of particles, and a detailed assessment of COVID-19-associated changes in HDL functionality and its prognostic value is lacking. In the present study, we assessed HDL cholesterol efflux capacity, HDL anti-inflammatory and antioxidant properties, and changes in HDL composition and metabolism in COVID-19 (n = 48) and non-COVID pneumonia patients (n = 32). COVID-19 infection markedly reduced the activity of lecithin-cholesteryl-acyltransferase and functional parameters of HDL, such as the cholesterol efflux capacity, arylesterase activity of paraoxonase 1, and anti-oxidative capacity of apoB-depleted serum when compared to non-COVID pneumonia at baseline, paralleled by markedly reduced levels of HDL-cholesterol. Of particular interest, low HDL cholesterol efflux capacity was associated with increased mortality risk in COVID-19 patients, independent of HDL-C levels. Our results highlight profound effects of COVID-19 infection on HDL function, metabolism, and composition. Low HDL cholesterol efflux capacity indicates a fatal course of COVID-19, independent of HDL-cholesterol levels.
RESUMO
Introduction: A functional reciprocity between the gut microbiome and vagal nerve activity has been suggested, however, human studies addressing this phenomenon are limited. Methods: Twenty-four-hour cardiac vagal activity (CVA) was assessed from 73 female participants (aged 24.5 ± 4.3 years). Additionally, stool samples were subjected to 16SrRNA gene analysis (V1-V2). Quantitative Insights Into Microbial Ecology (QIIME) was used to analyse microbiome data. Additionally, inflammatory parameters (such as CRP and IL-6) were derived from serum samples. Results: Daytime CVA correlated significantly with gut microbiota diversity (r sp = 0.254, p = 0.030), CRP (r sp = -0.348, p = 0.003), and IL-6 (r sp = -0.320, p = 0.006). When the group was divided at the median of 24 h CVA (Mdn = 1.322), the following features were more abundant in the high CVA group: Clostridia (Linear discriminant analysis effect size (LDA) = 4.195, p = 0.029), Clostridiales (LDA = 4.195, p = 0.029), Lachnospira (LDA = 3.489, p = 0.004), Ruminococcaceae (LDA = 4.073, p = 0.010), Faecalibacterium (LDA = 3.982, p = 0.042), Lactobacillales (LDA = 3.317, p = 0.029), Bacilli (LDA = 3.294, p = 0.0350), Streptococcaceae (LDA = 3.353, p = 0.006), Streptococcus (LDA = 3.332, p = 0.011). Based on Dirichlet multinomial mixtures two enterotypes could be detected, which differed significantly in CVA, age, BMI, CRP, IL-6, and diversity. Conclusions: As an indicator of gut-brain communication, gut microbiome analysis could be extended by measurements of CVA to enhance our understanding of signalling via microbiota-gut-brain-axis and its alterations through psychobiotics.
Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-6 , Projetos PilotoRESUMO
Objective: Over the years, non-alcoholic fatty liver (NAFLD) disease has progressed to become the most frequent chronic liver disease in children and adolescents. The full pathology is not yet known, but disease progression leads to cirrhosis and hepatocellular carcinoma. Risk factors included hypercaloric diet, obesity, insulin resistance and genetics. Hyperglucagonemia appears to be a pathophysiological consequence of hepatic steatosis, thus, the hypothesis of the study is that hepatic fat accumulation leads to increased insulin resistance and impaired glucagon metabolism leading to hyperglucagonemia in pediatric NAFLD. Methods: 132 children and adolescents between 10 and 18 years, with varying degrees of obesity, were included in the study. Using Magnetic Resonance Imaging (MRI) average liver fat was determined, and patients were stratified as NAFLD (>5% liver fat content) and non-NAFLD (<5%). All patients underwent a standardized oral glucose tolerance test (OGTT). Additionally, anthropometric parameters (height, weight, BMI, waist circumference, hip circumference) such as lab data including lipid profile (triglycerides, HDL, LDL), liver function parameters (ALT, AST), uric acid, glucose metabolism (fasting insulin and glucagon, HbA1c, glucose 120 min) and indices evaluating insulin resistance (HIRI, SPISE, HOMA-IR, WBISI) were measured. Results: Children and adolescents with NAFLD had significantly higher fasting glucagon values compared to the non-NAFLD cohort (p=0.0079). In the NAFLD cohort univariate analysis of fasting glucagon was associated with BMI-SDS (p<0.01), visceral adipose tissue volume (VAT) (p<0.001), average liver fat content (p<0.001), fasting insulin concentration (p<0.001), triglycerides (p<0.001) and HDL (p=0.034). This correlation equally applied to all insulin indices HOMA-IR, WBISI, HIRI (all p<0.001) and SPISE (p<0.002). Multivariate analysis (R² adjusted 0.509) for the same subgroup identified HIRI (p=0.003) and VAT volume (p=0.017) as the best predictors for hyperglucagonemia. Average liver fat content is predictive in pediatric overweight and obesity but not NAFLD. Conclusions: Children and adolescents with NAFLD have significantly higher fasting plasma glucagon values, which were best predicted by hepatic insulin resistance and visceral adipose tissue, but not average liver fat content.
Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Adolescente , Criança , Glucagon , Glucose , Hemoglobinas Glicadas , Humanos , Insulina , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Triglicerídeos , Ácido ÚricoRESUMO
Atherosclerosis, the leading cause of cardiovascular disease responsible for the majority of deaths worldwide, cannot be sufficiently explained by established risk factors, including hypercholesterolemia. Elevated plasma homocysteine is an independent risk factor for atherosclerosis and is strongly linked to cardiovascular mortality. However, the role of homocysteine in atherosclerosis is still insufficiently understood. Previous research in this area has been also hampered by the lack of reproducible in vivo models of atherosclerosis that resemble the human situation. Here, we have developed and applied an automated system for vessel wall injury that leads to more homogenous damage and more pronounced atherosclerotic plaque development, even at low balloon pressure. Our automated system helped to glean vital details of cholesterol-independent changes in the aortic wall of balloon-injured rabbits. We show that deficiency of B vitamins, which are required for homocysteine degradation, leads to atherogenic transformation of the aorta resulting in accumulation of macrophages and lipids, impairment of its biomechanical properties and disorganization of aortic collagen/elastin in the absence of hypercholesterolemia. A combination of B vitamin deficiency and hypercholesterolemia leads to thickening of the aorta, decreased aortic water diffusion, increased LDL-cholesterol and impaired vascular reactivity compared to any single condition. Our findings suggest that deficiency of B vitamins leads to atherogenic transformation of the aorta even in the absence of hypercholesterolemia and aggravates atherosclerosis development in its presence.
Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Complexo Vitamínico B , Animais , Aorta/metabolismo , Aterosclerose/metabolismo , Colesterol , Dieta Aterogênica , Homocisteína/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , CoelhosRESUMO
(1) Background: Vitamin K (VK) is a fat-soluble compound with a common chemical structure, a 2-methyl-1,4-naphthoquinone ring, and a variable aliphatic side-chain. VK is involved in the synthesis of blood-clotting proteins, bone stability, anti-oxidative, and immune inflammatory-modulatory functions. Vitamin K also activates protein S, which acts as an antioxidant and anti-inflammatory. The fact that cytokine overproduction, oxidative stress, and disturbed microcirculation by thrombogenicity play a central role in severe COVID-19 prompted us to analyze this vitamin. (2) Methods: We analyzed by a validated liquid-chromatography tandem mass-spectrometry method serum vitamin K1, MK4, MK7, and VK epoxide levels in 104 healthy controls, 77 patients with non-COVID-19 pneumonia, and 135 hospitalized COVID-19 patients with potentially fatal outcomes admitted to our University Hospital between April and November 2020. We included the quotient between VK and triglyceride (TG, nmol/mmol/L) values in the analyses with respect to the TG transporter function for all VK subtypes. Additionally, we assessed anthropometric, routine laboratory, and clinical data from the laboratory and hospital information systems. (3) Results: The COVID-19 patients had significantly lower MK7 levels than non-COVID-19 pneumonia patients and healthy controls. COVID-19 and non-COVID-19 pneumonia patients had significantly lower vitamin K1 and significantly higher MK4 compared to healthy controls, but did not differ significantly from each other. Between COVID-19 non-survivors (n = 30) and survivors (n = 105) no significant differences were seen in all vitamin K subtypes, despite the fact that non-survivors had higher peak concentrations of IL-6, CRP, d-dimer, and higher oxygen needs, respectively. (4) Conclusions: The present data identified significantly decreased vitamin K1, K2 (MK7), and increased MK4 levels in patients with COVID-19 compared to healthy controls. Vitamin K2 (MK7) was lowest in COVID-19 patients irrespective of potentially fatal courses, indicating consumption of this VK subtype by COVID-19 immanent effects, most probably inflammatory and oxidative stress factors.
RESUMO
Paediatric non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in childhood. Obesity is the main risk factor. Nutrition and lifestyle are the key elements in preventing and treating NAFLD in the absence of approved drug therapy. Whilst recommendations and studies on macronutrients (carbohydrates, fat and protein) in adult NAFLD exist, the discussion of this topic in paediatric NAFLD remains contradictory. The purpose of this review is to provide state-of-the-art knowledge on the role of macronutrients in paediatric NAFLD regarding quality and quantity. PubMed was searched and original studies and review articles were included in this review. Fructose, sucrose, saturated fatty acids, trans-fatty acids and ω-6-fatty-acids are strongly associated with paediatric NAFLD. High consumption of fibre, diets with a low glycaemic index, mono-unsaturated-fatty-acids and ω-3-fatty-acids reduce the risk of childhood-onset NAFLD. Data regarding the role of dietary protein in NAFLD are contradictory. No single diet is superior in treating paediatric NAFLD, although the composition of macronutrients in the Mediterranean Diet appears beneficial. Moreover, the optimal proportions of total macronutrients in the diet of paediatric NAFLD patients are unknown. Maintaining a eucaloric diet and avoiding saturated fatty acids, simple sugars (mainly fructose) and a high-caloric Western Diet are supported by literature.