Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Genet Evol ; 119: 105576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408586

RESUMO

Lymnaeid snails are some of the most widespread snails and are the first intermediate host of trematode parasites that affect human and livestock health. A full understanding of the genetic relationship of hosts and parasites is of paramount importance for effective parasite management. The present study assessed the prevalence of trematode larvae in lymnaeid snails and examined the genetic diversity of these snails collected across Thailand. We collected 672 lymnaeid snails from 39 locations in 22 provinces of six regions in Thailand. Subsequently, cercarial infection in the snails was observed by using the shedding method. Lymnaeid snails released 5 types of trematode cercariae, namely, xiphidiocercariae, echinostome cercariae I, echinostome cercariae II, furcocercous cercariae, and strigea cercariae. The phylogenetic analysis based on ITS2 and 28S rDNA sequences revealed 5 cercaria types assigned to four trematode families, of which two belong to the group of human intestinal flukes. Combination of shell morphology and sequence analysis of the mitochondrial COI and 16S rDNA genes, the lymnaeid snails were classified into two species, Radix rubiginosa and Orientogalba viridis. Moreover, the combined dataset of mtDNA genes (COI + 16S rDNA) from R. rubiginosa and O. viridis revealed 32 and 15 different haplotypes, respectively, of which only a few haplotypes were infected with cercariae. The genetic diversity and genetic structure revealed that R. rubiginosa and O. viridis experienced a bottleneck phenomenon, and showed limited gene flow between populations. Population demographic history analyses revealed that R. rubiginosa and O. viridis experienced population reductions followed by recent population expansion. These findings may improve our understanding of parasite-lymnaeid evolutionary relationships, as well as the underlying molecular genetic basis, which is information that can be used for further effective control of the spread of trematode disease.


Assuntos
Caramujos , Trematódeos , Animais , Humanos , Filogenia , Tailândia/epidemiologia , Caramujos/parasitologia , Trematódeos/genética , Trematódeos/anatomia & histologia , Cercárias/genética , DNA Ribossômico , Variação Genética
2.
Vet World ; 15(3): 602-610, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35497967

RESUMO

Background and Aim: Toxoplasma gondii is recognized as a zoonosis causing toxoplasmosis in animals globally. Cat is a definitive host of T. gondii and sheds oocyst through feces, which can infect human beings and animals through contaminated food ingestion. A precise diagnostic test is essential to prevent T. gondii infection in both humans and animals. This study aimed to develop and evaluate the pETite-dense granule antigen 7(GRA7)-based indirect enzyme-linked immunosorbent assay (ELISA) to detect T. gondii infection in cats. Materials and Methods: T. gondii-GRA7 was cloned and expressed in the Expresso®small ubiquitin-related modifier (SUMO) T7 Cloning and Expression System. The recombinant pETite-GRA7 was purified using HisTrap affinity chromatography and confirmed using Western blot analysis. The recombinant protein was used to develop and evaluate the indirect ELISA for T. gondii infection detection. In total, 200 cat sera were tested using pETite-GRA7-based indirect ELISA and indirect fluorescent antibody test (IFAT). The statistical analysis based on Kappa value, sensitivity, specificity, positive predictive value, negative predictive value, χ 2 test, and receiver operating characteristic (ROC) curve was used to evaluate the performance of the test. Results: A 606 bp GRA7 polymerase chain reaction (PCR) product was obtained from T. gondii RH strain genomic DNA. The gene was cloned into the pETite™ vector and transformed to HI-Control Escherichia coli BL21 (DE3) for protein expression. Approximately 35 kDa of recombinant pETite-GRA7 was observed and Western blot analysis showed positive bands against anti-6-His antibody and positive-T. gondii cat serum. A sample of 0.5 µg/mL of pETite-GRA7 was subjected to indirect ELISA to detect T. gondii infection in the cat sera. The results showed sensitivity and specificity of pETite-GRA7-based indirect ELISA at 72% and 96%, respectively. An acceptable diagnostic performance was characterized by high concordant results (94%) and substantial agreement (Kappa value=0.65) with IFAT. The seroprevalence levels of ELISA and IFAT were 10% and 9%, respectively, and were not significantly (p>0.05) different. The expected performance of ELISA at different cutoff points using the ROC curve analysis revealed 89% sensitivity and 92% specificity at the cutoff value of 0.146, with a high overall assay accuracy (area under the curve=0.94). Conclusion: In this study, the pETite™ vector, N-terminal 6xHis SUMO fusion tag, was used to improve the solubility and expression level of GRA7. The recombinant pETite-GRA7 showed enhanced protein solubility and purification without special condition requirements. This pETite-GRA7-based indirect ELISA showed high concordant results and substantial agreement with IFAT. ELISA revealed an acceptable sensitivity and specificity. These initial data obtained from cats' sera demonstrated that pETite-GRA7-based indirect ELISA could be a useful method for local serological diagnosis of T. gondii infection in cats in Thailand.

3.
Vet World ; 15(12): 2877-2889, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718324

RESUMO

Background and Aim: Ehrlichia canis and Anaplasma platys are tick-borne, Gram-negative bacteria that cause canine monocytic ehrlichiosis and canine cyclic thrombocytopenia, respectively. These diseases are of great importance and are distributed globally. This study aimed to create new primers for the identification of E. canis and A. platys in naturally infected dogs using polymerase chain reaction (PCR), DNA sequencing, and phylogenetic analysis using the 16S rDNA and gltA genes. Materials and Methods: In total, 120 blood samples were collected from dogs in three different locations (Saraburi, Buriram, and Nakhon Ratchasima provinces) in Central and Northeast Thailand. The molecular prevalence of E. canis and A. platys was assessed using PCR targeting the 16S rDNA and gltA genes. All positive PCR amplicons were sequenced, and phylogenetic trees were constructed based on the maximum likelihood method. Results: Ehrlichia canis had an overall molecular prevalence of 15.8% based on the 16S rDNA gene, compared to 8.3% based on the gltA gene. In addition, the overall molecular prevalence of A. platys using the 16S rDNA gene was 10.8%, while the prevalence rate was 5.8% using the gltA gene. Coinfection was 0.8% in Saraburi province. The partial sequences of the 16S rDNA and gltA genes of E. canis and A. platys in dogs in Central and Northeast Thailand showed 96.75%-100% identity to reference sequences in GenBank. Phylogenetic analysis of the 16S rDNA and gltA genes revealed that E. canis and A. platys sequences were clearly grouped into their own clades. Conclusion: This study demonstrated the molecular prevalence of E. canis and A. platys in Central and Northeast Thailand. The 16S rDNA and gltA genes were useful for the diagnosis of E. canis and A. platys. Based on the phylogenetic analysis, the partial sequences of the 16S rDNA and gltA genes in E. canis and A. platys were related to prior Thai strains and those from other countries.

4.
Zool Stud ; 60: e31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34963784

RESUMO

Pomacea is a freshwater snail in family Ampullariidae that is native to South and Central America. This snail is among the more important intermediate hosts for Angiostrongylus cantonensis and agricultural pests. Herein, we investigated the prevalence of A. cantonensis larvae and the genetic diversity of Pomacea samples collected across Thailand based on mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. The larval-infection rate was 1.7% in Pomacea canaliculata specimens collected from the Uttaradit Province of northern Thailand. We randomly selected specimens of P. canaliculata and P. maculata for genetic analysis. We analyzed 244 COI sequences, including 49 sequences from samples collected from Thailand and a publicly accessible database of snails in their native and non-native ranges. A maximum-likelihood tree of P. canaliculata and P. maculata revealed two main clades. The genetic diversity analysis identified seven P. canaliculata haplotypes and six P. maculata haplotypes, and showed genetic differences between the populations of P. canaliculata and P. maculata. The haplotype networks of P. canaliculata and P. maculata populations in Thailand are similar to those of populations in multiple countries, indicating that this species spread widely to many parts of the world.

5.
Vet World ; 14(4): 943-948, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34083944

RESUMO

BACKGROUND AND AIM: Hemoplasmas are defined as small, epicellular parasitic bacteria that can infect the red blood cells of several mammalian species. Diseases caused by these bacteria range from asymptomatic infections to acute hemolytic anemia. However, data on hemoplasmas in non-human primates in Thailand remain to be limited. Therefore, this study aims to determine the occurrence and genetic diversity of hemoplasmas among long-tailed macaques in Thailand. MATERIALS AND METHODS: Blood samples were collected from 339 long-tailed macaques in three provinces of Thailand. DNA was then extracted from the blood samples and tested for hemoplasma using broad-range nested polymerase chain reaction (PCR) based on the 16S rRNA gene. PCR-positive samples were sequenced, and phylogenetic analysis for species identification was conducted. RESULTS: In total, 38 (11.2%) out of the 339 samples were found to be positive for hemoplasmas, based on the broad-range nested PCR assay of the 16S rRNA gene. The 16S rRNA sequences of Mycoplasma spp. were highly similar (98-99% identity) to "Candidatus Mycoplasma haemomacaque." Furthermore, phylogenetic analysis using maximum likelihood demonstrated that the sequences were located in the same cluster of "Ca. M. haemomacaque." CONCLUSION: The detection of hemoplasmas among long-tailed macaques in Thailand is reported. Genetic characterization confirmed that these hemoplasmas are closely related to "Ca. M. haemomacaque." These results indicate that long-tailed macaques in several locations in Thailand may be infected and serve as reservoirs for this parasite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA