Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Virus Res ; 344: 199353, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490581

RESUMO

The emergence of SARS-CoV-2 variants has led to several cases among children. However, limited information is available from North African countries. This study describes the SARS-CoV-2 strains circulating in Tunisian pediatric population during successive waves. A total of 447 complete sequences were obtained from individuals aged from 13 days to 18 years, between March 2020 and September 2022: 369 sequences generated during this study and 78 ones, available in GISAID, previously obtained from Tunisian pediatric patients. These sequences were compared with 354 and 274 ones obtained from Tunisian adults and a global dataset, respectively. The variant circulation dynamics of predominant variants were investigated during the study period using maximum-likelihood phylogenetic analysis. Among the studied population, adolescents were the predominant age group, comprising 55.26% of cases. Twenty-three lineages were identified; seven of which were not previously reported in Tunisia. Phylogenetic analysis showed a close relationship between the sequences from Tunisian adults and children. The connections of sequences from other countries were variable according to variants: close relationships were observed for Alpha, B1.160 and Omicron variants, while independent Tunisian clusters were observed for Delta and B.1.177 lineages. These findings highlight the pivotal role of children in virus transmission and underscore the impact of vaccination on virus spread. Vaccination of children, with booster doses, may be considered for better management of future emergences.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2 , Humanos , Tunísia/epidemiologia , COVID-19/virologia , COVID-19/epidemiologia , Criança , SARS-CoV-2/genética , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Pré-Escolar , Lactente , Adolescente , Masculino , Recém-Nascido , Feminino
2.
Heliyon ; 9(11): e21101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027571

RESUMO

Within public health control strategies for SARS-CoV-2, whole genome sequencing (WGS) is essential for tracking viral spread and monitoring the emergence of variants which may impair the effectiveness of vaccines, diagnostic methods, and therapeutics. In this manuscript different strategies for SARS-CoV-2 WGS including metagenomic shotgun (SG), library enrichment by myBaits® Expert Virus-SARS-CoV-2 (Arbor Biosciences), nCoV-2019 sequencing protocol, ampliseq approach by Swift Amplicon® SARS-CoV-2 Panel kit (Swift Biosciences), and Illumina COVIDSeq Test (Illumina Inc.), were evaluated in order to identify the best approach in terms of results, labour, and costs. The analysis revealed that Illumina COVIDSeq Test (Illumina Inc.) is the best choice for a cost-effective, time-consuming production of consensus sequences.

3.
Nat Commun ; 14(1): 6440, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833275

RESUMO

It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/genética , Filogenia , Europa (Continente)/epidemiologia , África do Sul , Aves
4.
Foods ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569189

RESUMO

Campylobacter is one of the most common foodborne diseases worldwide with increasing rates of antibiotic resistance. Most cases of campylobacteriosis can be traced back to the consumption of poultry meat. Despite many efforts to reduce contamination in farms and in slaughterhouses, the persistence of this pathogen in poultry products remains a problem. This study aimed to evaluate the genetic diversity and antibiotic resistance of 542 C. jejuni and C. coli in Italian poultry, in the framework of two National Monitoring Programs. Genomes were screened for antibiotic resistance, virulence determinants and contextualized within a global collection of C. jejuni. ST2116, ST2863 and ST 832 were the most prevalent and significantly associated with Italian poultry. A worrying increase in resistance to quinolones, fluoroquinolones and tetracycline was observed in C. jejuni, while an increased occurrence of multidrug resistant (MDR) strains and strains resistant to macrolides was detected in C. coli. Low resistance rates were found for aminoglycosides. Molecular resistance determinants were consistent with the phenotypic resistance for tetracycline and quinolones. In silico analysis revealed 119 genes associated with virulence factors, with a notably higher prevalence of some genes in ST2863 genomes. This study highlights the increased resistance to macrolides and the emergence of MDR strains for C. coli, the genetic basis of AMR and the predominance of two genotypes among Campylobacter strains isolated from the Italian poultry farms.

5.
Microbiol Resour Announc ; 12(4): e0103422, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920210

RESUMO

In this report, we describe eight complete genome sequences of African horse sickness virus (AHSV) strains belonging to four different serotypes, namely, AHSV-5, AHSV-6, AHSV-8, and AHSV-9. Samples were collected in Namibia and South Africa from infected horses between 2000 and 2011. As expected, phylogenetic analyses of the variable outer capsid protein VP2 genomic sequences of AHSV-6 and AHSV-8 show higher nucleotide identity between the isolated viruses than that of the relevant reference strains. The full-genome sequence of AHSV will provide useful information on its geographical origin, and it will also be instrumental for comparing the distribution of the Namibian isolate with that of global isolates.

6.
One Health ; 16: 100471, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36507072

RESUMO

The Istituti Zooprofilattici Sperimentali (IZSs) are public health institutes dealing with the aetiology and pathogenesis of infectious diseases of domestic and wild animals. During Coronavirus Disease 2019 epidemic, the Italian Ministry of Health appointed the IZSs to carry out diagnostic tests for the detection of SARS-CoV-2 in human samples. In particular, the IZS of Abruzzo and Molise (IZS-Teramo) was involved in the diagnosis of SARS-CoV-2 through testing nasopharyngeal swabs by Real Time RT-PCR. Activities and infrastructures were reorganised to the new priorities, in a "One Health" framework, based on interdisciplinary, laboratory promptness, accreditation of the test for the detection of the RNA of SARS-CoV-2 in human samples, and management of confidentiality of sensitive data. The laboratory information system - SILAB - was implemented with a One Health module for managing data of human origin, with tools for the automatic registration of information improving the quality of the data. Moreover, the "National Reference Centre for Whole Genome Sequencing of microbial pathogens - database and bioinformatics analysis" - GENPAT - formally established at the IZS-Teramo, developed bioinformatics workflows and IT dashboard with ad hoc surveillance tools to support the metagenomics-based SARS-CoV-2 surveillance, providing molecular sequencing analysis to quickly intercept the variants circulating in the area. This manuscript describes the One Health system developed by adapting and integrating both SILAB and GENPAT tools for supporting surveillance during COVID-19 epidemic in the Abruzzo region, southern Italy. The developed dashboard permits the health authorities to observe the SARS-CoV-2 spread in the region, and by combining spatio-temporal information with metagenomics provides early evidence for the identification of emerging space-time clusters of variants at the municipality level. The implementation of the One Health module was designed to be easily modelled and adapted for the management of other diseases and future hypothetical events of pandemic nature.

7.
Vaccines (Basel) ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560544

RESUMO

The pandemic of coronavirus disease 19 (COVID-19) has focused the attention of researchers, and especially public opinion, on the role of the human-animal-environment interface in disease emergence. At the beginning of the COVID-19 pandemic, media reports regarding the role of pets in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused significant concern and social anxiety. Although nowadays proven negligible in developed countries, essentially no studies have been performed in low-income African areas where companion animals are often raised differently from high income countries, and the contact patterns occurring in these scenarios could affect the epidemiological scenario. An extensive molecular biology survey was performed from March 2022 to September 2022 on Namibian dogs residing in urban and rural areas, showing a low but not negligible SARS-CoV-2 prevalence (1%; 95CI: 0.33-2.32%) of 5 out of 500. In only one instance (i.e., a 4-year-old female Labrador) was there a clear association that could be established between the infections of the owner and animal. In all other cases, no evidence of human infection could be obtained and no episodes of COVID-19 were reported by the owners. Although no consistent evidence of pet-to-pet transmission was proven in the present study, a cautionary principle suggests intensive and dedicated investigation into companion animal populations, especially when animal contact is frequent and a particularly susceptible population is present.

8.
Res Vet Sci ; 151: 36-41, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853329

RESUMO

Bluetongue virus (BTV) is the etiologic agent of bluetongue, a WOAH (founded as Office International des Épizooties, OIE)-notifiable economically important disease of ruminants. BTV is transmitted by Culicoides biting midges and 24 different "classical" serotypes have been reported to date. In recent years, several putative novel BTV serotypes, often referred to as "atypical" BTVs, have been documented. These are characterized by unusual biological characteristics, most notably avirulence and vector-independent transmission. Here, we describe the recurrence of such an atypical virus strain BTV-X ITL2021 detected in goats six years after its first discovery in Sardinia, Italy. Combined serological and genome analysis results clearly suggest that the two strains belong to the same BTV serotype. However, unlike the 2015 strain, BTV-X ITL2021 was successfully isolated in BSR cell-culture allowing further serological characterization. Lastly, seropositivity for BTV-X ITL2021 was detected by virus-neutralization in approximately 74% of animals tested, suggesting that this atypical BTV serotype has been circulating undetected in asymptomatic animals for years.


Assuntos
Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doenças das Cabras , Doenças dos Ovinos , Animais , Bluetongue/epidemiologia , Vírus Bluetongue/genética , Doenças das Cabras/epidemiologia , Cabras , Itália/epidemiologia , Sorogrupo , Ovinos
9.
Epidemics ; 39: 100578, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35636310

RESUMO

From 24 December 2020 to 8 February 2021, 163 cases of SARS-CoV-2 Alpha variant of concern (VOC) were identified in Chieti province, Abruzzo region. Epidemiological data allowed the identification of 14 epi-clusters. With one exception, all the epi-clusters were linked to the town of Guardiagrele: 149 contacts formed the network, two-thirds of which were referred to the family/friends context. Real data were then used to estimate transmission parameters. According to our method, the calculated Re(t) was higher than 2 before the 12 December 2020. Similar values were obtained from other studies considering Alpha VOC. Italian sequence data were combined with a random subset of sequences obtained from the GISAID database. Genomic analysis showed close identity between the sequences from Guardiagrele, forming one distinct clade. This would suggest one or limited unspecified viral introductions from outside to Abruzzo region in early December 2020, which led to the diffusion of Alpha VOC in Guardiagrele and in neighbouring municipalities, with very limited inter-regional mixing.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Surtos de Doenças , Genoma Viral/genética , Genômica , Humanos , Itália/epidemiologia , SARS-CoV-2/genética
10.
BMC Genomics ; 23(1): 235, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346021

RESUMO

BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate's genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X.


Assuntos
Listeria monocytogenes , Genoma Bacteriano , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma
11.
Emerg Infect Dis ; 28(1): 139-147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932464

RESUMO

Streptococcus suis is a pathogen associated with severe diseases in pigs and humans. Human infections have a zoonotic origin in pigs. To assess circulating strains, we characterized the serotypes, sequence types, and antimicrobial susceptibility of 78 S. suis isolates from diseased farmed pigs in Italy during 2017-2019. Almost 60% of infections were caused by serotypes 1/2 and 9. All but 1 of the serotype 2 and 1/2 isolates were confined to a single cluster, and serotype 9 isolates were distributed along the phylogenetic tree. Besides sequence type (ST) 1, the serotype 2 cluster included ST7, which caused severe human infections in China in 1998 and 2005. A large proportion of serotype 9 isolates, assigned to ST123, were resistant to penicillin. The emergence of this clone threatens the successful treatment of S. suis infection. Characterizing S. suis isolates from pigs will promote earlier detection of emerging clones.


Assuntos
Anti-Infecciosos , Preparações Farmacêuticas , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Filogenia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Suínos , Doenças dos Suínos/epidemiologia
12.
BMC Genomics ; 22(1): 782, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717546

RESUMO

BACKGROUND: Faced with the ongoing global pandemic of coronavirus disease, the 'National Reference Centre for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis' (GENPAT) formally established at the 'Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise' (IZSAM) in Teramo (Italy) is in charge of the SARS-CoV-2 surveillance at the genomic scale. In a context of SARS-CoV-2 surveillance requiring correct and fast assessment of epidemiological clusters from substantial amount of samples, the present study proposes an analytical workflow for identifying accurately the PANGO lineages of SARS-CoV-2 samples and building of discriminant minimum spanning trees (MST) bypassing the usual time consuming phylogenomic inferences based on multiple sequence alignment (MSA) and substitution model. RESULTS: GENPAT constituted two collections of SARS-CoV-2 samples. The first collection consisted of SARS-CoV-2 positive swabs collected by IZSAM from the Abruzzo region (Italy), then sequenced by next generation sequencing (NGS) and analyzed in GENPAT (n = 1592), while the second collection included samples from several Italian provinces and retrieved from the reference Global Initiative on Sharing All Influenza Data (GISAID) (n = 17,201). The main results of the present work showed that (i) GENPAT and GISAID detected the same PANGO lineages, (ii) the PANGO lineages B.1.177 (i.e. historical in Italy) and B.1.1.7 (i.e. 'UK variant') are major concerns today in several Italian provinces, and the new MST-based method (iii) clusters most of the PANGO lineages together, (iv) with a higher dicriminatory power than PANGO lineages, (v) and faster that the usual phylogenomic methods based on MSA and substitution model. CONCLUSIONS: The genome sequencing efforts of Italian provinces, combined with a structured national system of NGS data management, provided support for surveillance SARS-CoV-2 in Italy. We propose to build phylogenomic trees of SARS-CoV-2 variants through an accurate, discriminant and fast MST-based method avoiding the typical time consuming steps related to MSA and substitution model-based phylogenomic inference.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Itália , Filogenia , Polimorfismo de Nucleotídeo Único
13.
Microbiol Resour Announc ; 10(31): e0061821, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351227

RESUMO

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are emerging worldwide. Here, we report the complete genome sequences of 13 severe acute SARS-CoV-2 strains belonging to lineage B.1.525 (variant η).

14.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946747

RESUMO

Italy's second wave of SARS-CoV-2 has hit hard, with more than three million cases and over 100,000 deaths, representing an almost ten-fold increase in the numbers reported by August 2020. Herein, we present an analysis of 6515 SARS-CoV-2 sequences sampled in Italy between 29 January 2020 and 1 March 2021 and show how different lineages emerged multiple times independently despite lockdown restrictions. Virus lineage B.1.177 became the dominant variant in November 2020, when cases peaked at 40,000 a day, but since January 2021 this is being replaced by the B.1.1.7 'variant of concern'. In addition, we report a sudden increase in another documented variant of concern-lineage P.1-from December 2020 onwards, most likely caused by a single introduction into Italy. We again highlight how international importations drive the emergence of new lineages and that genome sequencing should remain a top priority for ongoing surveillance in Italy.


Assuntos
COVID-19 , Surtos de Doenças , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Itália/epidemiologia , Quarentena , Estudos Soroepidemiológicos
15.
Emerg Microbes Infect ; 10(1): 1148-1155, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34019466

RESUMO

Several lineages of SARS-CoV-2 are currently circulating worldwide. During SARS-CoV-2 diagnostic activities performed in Abruzzo region (central Italy) several strains belonging to the B.1.177.75 lineage tested negative for the N gene but positive for the ORF1ab and S genes (+/+/- pattern) by the TaqPath COVID-19 CE-IVD RT-PCR Kit manufactured by Thermofisher. By sequencing, a unique mutation, synonymous 28948C > T, was found in the N-negative B.1.177.75 strains. Although we do not have any knowledge upon the nucleotide sequences of the primers and probe adopted by this kit, it is likely that N gene dropout only occurs when 28948C > T is coupled with 28932C > T, this latter present, in turn, in all B.1.177.75 sequences available on public databases. Furthermore, epidemiological analysis was also performed. The majority of the N-negative B.1.177.75 cases belonged to two clusters apparently unrelated to each other and both clusters involved young people. However, the phylogeny for sequences containing the +/+/- pattern strongly supports a genetic connection and one common source for both clusters. Though, genetic comparison suggests a connection rather than indicating the independent emergence of the same mutation in two apparently unrelated clusters. This study highlights once more the importance of sharing genomic data to link apparently unrelated epidemiological clusters and to, remarkably, update molecular tests.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Proteínas do Nucleocapsídeo de Coronavírus/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Hotspot de Doença , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália/epidemiologia , Nucleocapsídeo/genética , Fosfoproteínas/genética , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/isolamento & purificação
16.
Microorganisms ; 9(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807487

RESUMO

Listeria monocytogenes is a bacterial pathogen responsible of listeriosis, a disease that in humans is often related to the contamination of ready-to-eat foods. Phages are candidate biodecontaminants of pathogenic bacteria thanks to their ability to lyse prokaryotes while being safe for eukaryotic cells. In this study, ɸIZSAM-1 was isolated from the drain-waters of an Italian blue cheese plant and showed lytic activity against antimicrobial resistant Listeria monocytogenes strains. This phage was subjected to purification and in vitro efficacy tests. The results showed that at multiplicities of infection (MOIs) ≤ 1, phages were able to keep Listeria monocytogenes at low optical density values up to 8 h, with bacterial counts ranging from 1.02 to 3.96 log10 units lower than the control. Besides, ɸIZSAM-1 was further characterized, showing 25 principal proteins (sodium dodecyl sulfate polyacrylamide gel electrophoresis profile) and a genome of approximately 50 kilo base pairs. Moreover, this study describes a new approach to phage isolation for applications in Listeriamonocytogenes biocontrol in food production. In particular, the authors believe that the selection of phages from the same environments where pathogens live could represent a new approach to successfully integrating the control measures in an innovative, cost effective, safe and environmentally friendly way.

17.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766902

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. We report the complete sequences of three SARS-CoV-2 P.1 strains obtained from nasopharyngeal swab specimens from three patients returning from Brazil to Italy.

18.
Microorganisms ; 8(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932776

RESUMO

Hepatitis E virus (HEV) is an emergent zoonotic pathogen, causing worldwide acute and chronic hepatitis in humans. HEV comprises eight genotypes and several subtypes. HEV genotypes 3 and 4 (HEV3 and HEV4) are zoonotic. In Italy, the most part of HEV infections (80%) is due to autochthonous HEV3 circulation of the virus, and the key role played by wild animals is generally accepted. Abruzzo is an Italian region officially considered an HEV "hot spot", with subtype HEV3-c being up to now the only one reported among wild boars. During the year 2018-2019, a group of wild boars in Abruzzo were screened for HEV; positive RNA liver samples were subjected to HEV characterization by using the whole genome sequencing (WGS) approach methodology. This represents the first report about the detection of HEV-3 subtypes e and f in the wild boar population in this area. Since in Italy human infections from HEV 3-e and f have been associated with pork meat consumption, our findings deserve more in-depth analysis with the aim of evaluating any potential correlation between wild animals, the pork chain production and HEV human infections.

19.
Viruses ; 12(8)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717784

RESUMO

Camelpox is a viral contagious disease of Old-World camelids sustained by Camelpox virus (CMLV). The disease is characterized by mild, local skin or severe systemic infections and may have a major economic impact due to significant losses in terms of morbidity and mortality, weight loss, and low milk yield. Prevention of camelpox is performed by vaccination. In this study, we investigated the composition of a CMLV-based, live-attenuated commercial vaccine using next-generation sequencing (NGS) technology. The results of this analysis revealed genomic sequences of Modified Vaccinia virus Ankara (MVA).


Assuntos
Orthopoxvirus/genética , Filogenia , Vaccinia virus/genética , Vacinas Virais/genética , Sequenciamento Completo do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Vacinas Atenuadas/genética
20.
One Health ; 10: 100135, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32313828

RESUMO

The current pandemic is caused by a novel coronavirus (CoV) called SARS-CoV-2 (species Severe acute respiratory syndrome-related coronavirus, subgenus Sarbecovirus, genus Betacoronavirus, family Coronaviridae). In Italy, up to the 2nd of April 2020, overall 139,422 confirmed cases and 17,669 deaths have been notified, while 26,491 people have recovered. Besides the overloading of hospitals, another issue to face was the capacity to perform thousands of tests per day. In this perspective, to support the National Health Care System and to minimize the impact of this rapidly spreading virus, the Italian Ministry of Health involved the Istituti Zooprofilattici Sperimentali (IZSs), Veterinary Public Health Institutes, in the diagnosis of SARS-CoV-2 by testing human samples. The Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise is currently testing more than 600 samples per day and performing whole genome sequencing from positive samples. Sequence analysis of these samples suggested that different viral variants may be circulating in Italy, and so in Abruzzo region. CoVs, and related diseases, are well known to veterinarians since decades. The experience that veterinarians operating within the Public Health system gained in the control and characterization of previous health issues of livestock and poultry including avian flu, bluetongue, foot and mouth disease, responsible for huge economic losses, is certainly of great help to minimize the impact of this global crisis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA