Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(32): 35080-35087, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157092

RESUMO

Bubble formation during mixing of the base elastomer and the curing agent for polydimethylsiloxane (PDMS) preparation presents a significant challenge, traditionally addressed through vacuum degassing or centrifugation. This study introduces a novel alternative for bubble removal in PDMS mixtures: a churning motion inspired by industrial dairy separation processes. A low-cost, manually operated, do-it-yourself (DIY) churning device has been developed for this purpose. We investigate the effectiveness of churning in eliminating bubbles across three different churning speeds and two PDMS mixtures with differing viscosities. The efficacy of this method is quantitatively assessed through the analysis of images captured during the churning process. The results demonstrate that bubble removal is notably more efficient in the PDMS mixture with a higher viscosity due to enhanced bubble coalescence. Among the tested speeds, fast churning emerges as the most effective, achieving bubble removal in less than 100 s-significantly outperforming the traditional vacuum degassing method, which requires over 3000 s. These findings highlight churning motion as a rapid, efficient, and cost-effective alternative for bubble removal in PDMS processing, promising significant advancements in material preparation techniques.

2.
Diagnostics (Basel) ; 14(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39061656

RESUMO

Hepatocellular carcinoma is currently the most common malignancy of the liver. It typically occurs due to a series of oncogenic mutations that lead to aberrant cell replication. Most commonly, hepatocellular carcinoma (HCC) occurs as a result of pre-occurring liver diseases, such as hepatitis and cirrhosis. Given its aggressive nature and poor prognosis, the early screening and diagnosis of HCC are crucial. However, due to its plethora of underlying risk factors and pathophysiologies, patient presentation often varies in the early stages, with many patients presenting with few, if any, specific symptoms in the early stages. Conventionally, screening and diagnosis are performed through radiological examination, with diagnosis confirmed by biopsy. Imaging modalities tend to be limited by their requirement of large, expensive equipment; time-consuming operation; and a lack of accurate diagnosis, whereas a biopsy's invasive nature makes it unappealing for repetitive use. Recently, biosensors have gained attention for their potential to detect numerous conditions rapidly, cheaply, accurately, and without complex equipment and training. Through their sensing platforms, they aim to detect various biomarkers, such as nucleic acids, proteins, and even whole cells extracted by a liquid biopsy. Numerous biosensors have been developed that may detect HCC in its early stages. We discuss the recent updates in biosensing technology, highlighting its competitive potential compared to conventional methodology and its prospects as a tool for screening and diagnosis.

3.
Front Mol Biosci ; 11: 1381789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993840

RESUMO

Exosomal microRNAs (miRNAs) have great potential in the fight against hepatocellular carcinoma (HCC), the fourth most common cause of cancer-related death worldwide. In this study, we explored the various applications of these small molecules while analyzing their complex roles in tumor development, metastasis, and changes in the tumor microenvironment. We also discussed the complex interactions that exist between exosomal miRNAs and other non-coding RNAs such as circular RNAs, and show how these interactions coordinate important biochemical pathways that propel the development of HCC. The possibility of targeting exosomal miRNAs for therapeutic intervention is paramount, even beyond their mechanistic significance. We also highlighted their growing potential as cutting-edge biomarkers that could lead to tailored treatment plans by enabling early identification, precise prognosis, and real-time treatment response monitoring. This thorough analysis revealed an intricate network of exosomal miRNAs lead to HCC progression. Finally, strategies for purification and isolation of exosomes and advanced biosensing techniques for detection of exosomal miRNAs are also discussed. Overall, this comprehensive review sheds light on the complex web of exosomal miRNAs in HCC, offering valuable insights for future advancements in diagnosis, prognosis, and ultimately, improved outcomes for patients battling this deadly disease.

4.
Biosensors (Basel) ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38785709

RESUMO

Hepatocellular carcinoma (HCC) is currently one of the most prevalent cancers worldwide. Associated risk factors include, but are not limited to, cirrhosis and underlying liver diseases, including chronic hepatitis B or C infections, excessive alcohol consumption, nonalcoholic fatty liver disease (NAFLD), and exposure to chemical carcinogens. It is crucial to detect this disease early on before it metastasizes to adjoining parts of the body, worsening the prognosis. Serum biomarkers have proven to be a more accurate diagnostic tool compared to imaging. Among various markers such as nucleic acids, circulating genetic material, proteins, enzymes, and other metabolites, alpha-fetoprotein (AFP) is a protein marker primarily used to diagnose HCC. However, current methods need a large sample and carry a high cost, among other challenges, which can be improved using biosensing technology. Early and accurate detection of AFP can prevent severe progression of the disease and ensure better management of HCC patients. This review sheds light on HCC development in the human body. Afterward, we outline various types of biosensors (optical, electrochemical, and mass-based), as well as the most relevant studies of biosensing modalities for non-invasive monitoring of AFP. The review also explains these sensing platforms, detection substrates, surface modification agents, and fluorescent probes used to develop such biosensors. Finally, the challenges and future trends in routine clinical analysis are discussed to motivate further developments.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Detecção Precoce de Câncer , Neoplasias Hepáticas , alfa-Fetoproteínas , Humanos , Carcinoma Hepatocelular/diagnóstico , alfa-Fetoproteínas/análise , Neoplasias Hepáticas/diagnóstico , Biomarcadores Tumorais
5.
World J Microbiol Biotechnol ; 40(3): 97, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349426

RESUMO

Central to the domain of molecular biology resides the foundational process of DNA extraction and purification, a cornerstone underpinning a myriad of pivotal applications. In this research, we introduce a DNA extraction and purification technique leveraging polypropylene (PP) threads. The process commences with robust cell lysis achieved through the vigorous agitation of interwoven PP threads. The friction between the threads facilitates cell lysis especially those microbes having tough cell wall. For purification of DNA, thread-based isotachophoresis was employed which makes the whole process swift and cost-effective. Lysed cell-laden threads were submerged in a trailing electrolyte which separated DNA from other cellular contents. The process was performed with a tailored ITP device. An electric field directs DNA, cell debris, trailing electrolyte, and leading electrolyte toward the anode. Distinct ion migration resulted in DNA concentrating on the PP thread's anode-proximal region. The SYBR green dye is used to visualize DNA as a prominent green zone under blue light. The purified DNA exhibits high purity levels of 1.82 ± 0.1 (A260/A280), making it suitable for various applications aiming at nucleic acid detection.


Assuntos
Isotacoforese , DNA , Luz Azul , Morte Celular , Polipropilenos , Eletrólitos
6.
Crit Rev Anal Chem ; : 1-27, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133962

RESUMO

The advent of biosensors has tremendously increased our potential of identifying and solving important problems in various domains, ranging from food safety and environmental analysis, to healthcare and medicine. However, one of the most prominent drawbacks of these technologies, especially in the biomedical field, is to employ conventional samples, such as blood, urine, tissue extracts and other body fluids for analysis, which suffer from the drawbacks of invasiveness, discomfort, and high costs encountered in transportation and storage, thereby hindering these products to be applied for point-of-care testing that has garnered substantial attention in recent years. Therefore, through this review, we emphasize for the first time, the applications of switching over to noninvasive sampling techniques involving hair and nails that not only circumvent most of the aforementioned limitations, but also serve as interesting alternatives in understanding the human physiology involving minimal costs, equipment and human interference when combined with rapidly advancing technologies, such as microfluidics and organ-on-a-chip to achieve miniaturization on an unprecedented scale. The coalescence between these two fields has not only led to the fabrication of novel microdevices involving hair and nails, but also function as robust biosensors for the detection of biomarkers, chemicals, metabolites and nucleic acids through noninvasive sampling. Finally, we have also elucidated a plethora of futuristic innovations that could be incorporated in such devices, such as expanding their applications in nail and hair-based drug delivery, their potential in serving as next-generation wearable sensors and integrating these devices with machine-learning for enhanced automation and decentralization.

7.
Life (Basel) ; 14(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38255653

RESUMO

This hypothesis demonstrates that the efficiency of loop-mediated isothermal amplification (LAMP) for nucleic acid detection can be positively influenced by the preconcentration of microbial cells onto hydrophobic paper surfaces. The mechanism of this model is based on the high affinity of microbes towards hydrophobic surfaces. Extensive studies have demonstrated that hydrophobic surfaces exhibit enhanced bacterial and fungal adhesion. By exploiting this inherent affinity of hydrophobic paper substrates, the preconcentration approach enables the adherence of a greater number of target cells, resulting in a higher concentration of target templates for amplification directly from urine samples. In contrast to conventional methods, which often involve complex procedures, this approach offers a simpler, cost-effective, and user-friendly alternative. Moreover, the integration of cell adhesion, LAMP amplification, and signal readout within paper origami-based devices can provide a portable, robust, and highly efficient platform for rapid nucleic acid detection. This innovative hypothesis holds significant potential for point-of-care (POC) diagnostics and field surveillance applications. Further research and development in this field will advance the implementation of this technology, contributing to improved healthcare systems and public health outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA