Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biodegradation ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459363

RESUMO

Accumulation of polyethylene terephthalate (PET) polyester in ecosystems across the globe is a major pollution of concern. Microbial degradation recently generated novel insights into the biodegradation of varieties of plastics. In this study, a PET degrading bacterium Brucella intermedia IITR130 was isolated from a contaminated lake ecosystem at Pallikaranai, Chennai, India. Incubation of the bacterium along with the PET sheet (0.1 mm thickness) for 60 days resulted in 26.06% degradation, indicating a half-life of 137.8 days. Considerable changes in the surface morphology of the PET sheet were found as holes, pits, and cracks on incubation with strain IITR130, as revealed by scanning electron microscopy (SEM). After bacterial treatment of PET, the formation of new functional groups, most notably in the area of 3326 cm-1 suggestive of O-H stretch, leading to carboxylic acid and alcohol as products were suggested by fourier transform infrared (FTIR) analysis. Monomethyl terephthalate (MMT) and terephthalic acid (TPA) were identified by gas chromatography-mass spectrometry (GC-MS) analysis as PET degradation metabolites. Tributyrin clearance assay confirmed the presence of a lipase/esterase enzyme in the strain IITR130. In this study, a degradation pathway for PET by an isolated and identified bacterium Brucella intermedia IITR130 was characterized in detail.

2.
Antonie Van Leeuwenhoek ; 117(1): 57, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491220

RESUMO

Carbapenem resistant Klebsiella pneumoniae causing severe infection resulting in morbidity and mortality have become a global health concern. K. pneumoniae with sequence type ST147 is an international high-risk clonal lineage, genomic studies have been done on K. pneumoniae ST147 isolated from clinical origin but genomic data for environmental K. pneumoniae ST147 is very scarce. Herein, K. pneumoniae IITR008, an extensively drug resistant and potentially hypervirulent bacterium, was isolated from Triveni Sangam, the confluence of three rivers where religious congregations are organized. Phenotypic, genomic and comparative genomic analysis of strain IITR008 was performed. Antibiotic susceptibility profiling revealed resistance to 9 different classes of antibiotics including ß-lactams, ß-lactam combination agents, carbapenem, aminoglycoside, macrolide, quinolones, cephams, phenicol, and folate pathway antagonists and was found to be susceptible to only tetracycline. The strain IITR008 possesses hypervirulence genes namely, iutA and iroN in addition to numerous virulence factors coding for adherence, regulation, iron uptake, secretion system and toxin. Both the IITR008 chromosome and plasmid pIITR008_75 possess a plethora of clinically relevant antibiotic-resistant genes (ARGs) including blaCTX-M-15, blaTEM-1, and blaSHV-11, corroborating the phenotypic resistance. Comparative genomic analysis with other ST147 K. pneumoniae provided insights on the phylogenetic clustering of IITR008 with a clinical strain isolated from a patient in Czech with recent travel history in India and other clinical strains isolated from India and Pakistan. According to the 'One Health' perspective, surveillance of antibiotic resistance in the environment is crucial to impede its accelerated development in diverse ecological niches.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Filogenia , Rios , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Plasmídeos , Genômica , Ferro , Água , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
3.
J Environ Manage ; 355: 120508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457896

RESUMO

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Solo/química , Ecossistema , Poluentes do Solo/análise , Hidrocarbonetos/metabolismo , Microbiologia do Solo
4.
Virus Genes ; 60(2): 222-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279974

RESUMO

Klebsiella pneumonia is a serious pathogen involved in a range of infections. The increasing frequency of infection associated with K. pneumoniae and accelerated development of antimicrobial resistance has limited the available options of antibiotics for the treatment of infection. Bacteriophages are an attractive substitute to alleviate the problem of antibiotic resistance. In this study, isolation, microbiological and genomic characterization of bacteriophage Kp109 having the ability to infect K. pneumoniae has been shown. Phage Kp109 showed good killing efficiency and tolerance to a broad range of temperatures (4-60 °C) and pH (3-9). Transmission electron microscopy and genomic analysis indicated that phage Kp109 belongs to the genus Webervirus and family Drexlerviridae. Genomic analysis showed that the Kp109 has a 51,630 bp long double-stranded DNA genome with a GC content of 51.64%. The absence of known lysogenic, virulence, and antibiotic-resistant genes (ARGs) in its genome makes phage Kp109 safer to be used as a biocontrol agent for different purposes including phage therapy. The computational analysis of the putative endolysin gene revealed a binding energy of - 6.23 kcal/mol between LysKp109 and ligand NAM-NAG showing its potential to be used as an enzybiotic. However, future research is required for experimental validation of the in silico work to further corroborate the results obtained in the present study. Overall, phenotypic, genomic, and computational characterization performed in the present study showed that phages Kp109 and LysKp109 are promising candidates for future in vivo studies and could potentially be used for controlling K. pneumoniae infection.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Klebsiella , Genômica , Antibacterianos/farmacologia
5.
J Environ Manage ; 348: 119207, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832293

RESUMO

The combustion of mobil oil leads to the emission of toxic compounds in the environment. In this study, the aromatic and aliphatic hydrocarbon fractions present in a waste mobil oil collected from automobile market were comprehensively identified and their toxicity was evaluated using wheat grain. Lysinibacillus sphaericus strain IITR51 isolated and characterized previously could degrade 30-80% of both aliphatic and aromatic hydrocarbons in liquid culture. Interestingly, the strain IITR51 produced 627 mg/L of rhamnolipid biosurfactant by utilizing 3% (v/v) of waste mobil oil in the presence of 1.5% glycerol as additional carbon source. In a soil microcosm study by employing strain IITR51, 50-86% of 3-6 ring aromatic hydrocarbons and 63-98% of aliphatic hydrocarbons (C8 to C22) were degraded. Addition of 60 µg/mL rhamnolipid biosurfactant enhanced the degradation of both aliphatic and aromatic hydrocarbons from 76.88% to 61.21%-94.11% and 78.27% respectively. The degradation of mobil oil components improved the soil physico-chemical properties and increased soil fertility to 64% as evident by the phytotoxicity assessments. The findings indicate that strain IITR51 with degradation capability coupled with biosurfactant production could be a candidate for restoring hydrocarbon contaminated soils.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Tensoativos/metabolismo , Solo/química , Poluentes do Solo/química , Hidrocarbonetos/metabolismo , Microbiologia do Solo
6.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37838476

RESUMO

AIMS: Isolation of phthalate esters (PAEs) degrading bacteria from a solid waste dumpsite could degrade many plasticizers efficiently and to investigate their degrading kinetics, pathways, and genes. METHODS AND RESULTS: Based on their 16S rRNA gene sequence the strains were identified as Dietzia kunjamensis IITR165 and Brucella intermedia IITR166, which showed a first-order degradation kinetic model under lab conditions. The quantification of phthalates and their intermediate metabolites identification were done by using ultra-high-performance liquid chromatography (UHPLC) and gas chromatography-tandem mass-spectrometry (GC-MS/MS), respectively. Both the bacteria utilized >99% dibutyl phthalate at a high concentration of 100-400 mg L-1 within 192 h as monitored by UHPLC. GC-MS/MS revealed the presence of metabolites dimethyl phthalate (DMP), phthalic acid (PA), and benzoic acid (BA) during DBP degradation by IITR165 while monobutyl phthalate (MBP) and PA were identified in IITR166. Phthalate esters degrading gene cluster in IITR165 comprised two novel genes coding for carboxylesterase (dkca1) and mono-alkyl phthalate hydrolase (maph), having only 37.47% and 47.74% homology, respectively, with reported phthalate degradation genes, along with the terephthalate dioxygenase system (tphA1, A2, A3, and B). However, IITR166 harbored different gene clusters comprising di-alkyl phthalate hydrolase (dph_bi), and phthalate dioxygenase (ophA, B, and C) genes. CONCLUSIONS: Two novel bacterial strains, Dietzia kunjamensis IITR165 and Brucella intermedia IITR166, were isolated and found to efficiently degrade DBP at high concentrations. The degradation followed first-order kinetics, and both strains exhibited a removal efficiency of over 99%. Metabolite analysis revealed that both bacteria utilized de-methylation, de-esterification, and decarboxylation steps during degradation.


Assuntos
Actinomycetales , Brucella , Ácidos Ftálicos , Plastificantes , Resíduos Sólidos/análise , Espectrometria de Massas em Tandem , RNA Ribossômico 16S/genética , Ácidos Ftálicos/metabolismo , Dibutilftalato/análise , Dibutilftalato/metabolismo , Biodegradação Ambiental , Hidrolases , Actinomycetales/metabolismo , Bactérias/genética , Ésteres/metabolismo , Brucella/genética
7.
Environ Sci Pollut Res Int ; 30(34): 82517-82531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37326724

RESUMO

The present study investigated the concerted effort of Eisenia fetida and rhamnolipid JBR-425 in combination with a five-member bacterial consortium exhibiting elevated degradation levels of low and high molecular weight polycyclic aromatic hydrocarbons (PAH) from soil contaminated with Digboi crude oil. Application of bacterial consortium (G2) degraded 30-89% of selected PAH from the artificial soil after a 45-day post-exposure, in which chrysene showed the highest level of degradation with 89% and benzo(a)pyrene is the lowest with 30%, respectively. Moreover, an acute exposure study observed that earthworm biomass decreased, and mortality rates increased with increasing crude oil concentrations (0.25 to 2%). Earthworms with a 100% survival rate at 1% crude oil exposure suggest the tolerance potential and its mutual involvement in the bioremediation of crude oil with selected bacterial consortia. Bacterial consortium assisted with E. fetida (G3) showed 98% chrysene degradation with a slight change in benzo(a)pyrene degradation (35%) in crude oil spiked soil. Besides, the most dominant PAH in crude oil found in the current work, fluoranthene, undergoes 93% and 70% degradation in G3 and G5 groups, respectively. However, rhamnolipid JBR-425 coupled with the bacterial consortium (G5) has resulted in 97% degradation of chrysene and 33% for benzo(a)pyrene. Overall, bacterial consortium assisted with earthworm group has shown better degradation of selected PAH than bacterial consortium with biosurfactant. Catalase (CAT), glutathione reductase (GST) activity and MDA content was found to be reduced in earthworms after sub-lethal exposure, suggesting oxidative stress prevalence via reactive oxygen species (ROS). Hence, the findings of the present work suggest that the application of a bacterial consortium, along with earthworm E. fetida, has huge potential for field restoration of contaminated soil with PAH and ecosystem sustainability.


Assuntos
Oligoquetos , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Oligoquetos/metabolismo , Crisenos , Ecossistema , Biodegradação Ambiental , Solo , Petróleo/metabolismo , Benzo(a)pireno/metabolismo , Poluentes do Solo/análise , Bactérias/metabolismo
8.
Chemosphere ; 337: 139264, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37348617

RESUMO

Pollution from the oil industries and refineries has worsened various environmental compartments. In this study, indigenous oil degrading bacteria were isolated from crude oil obtained from an Oil and Natural Gas Corporation (ONGC) asset in Ankleshwar, Gujarat, India. Based on 16S rRNA phylogeny, they were identified as Pseudomonas boreopolis IITR108, Microbacterium schleiferi IITR109, Pseudomonas aeruginosa IITR110, and Bacillus velezensis IITR111. The strain IITR108, IITR109, IITR110, and IITR111 showed 80-89% and 71-78% degradation of aliphatic (C8-C40) and aromatic (4-5 ring) hydrocarbons respectively in 45 d when supplemented with 3% (v/v) waste crude oil. When compared to individual bacteria, the consortium degrades 93.2% of aliphatic hydrocarbons and 85.5% of polyaromatic hydrocarbons. It was observed that the total aliphatic and aromatic content of crude oil 394,470 µg/mL and 47,050 µg/mL was reduced up to 9617.75 µg/mL and 4586 µg/mL respectively in 45 d when consortium was employed. The rate kinetics analysis revealed that the biodegradation isotherm followed first order kinetics, with a linear correlation between concentration (hydrocarbons) and time intervals. The half-life of aliphatic (C8-C40) and aromatic hydrocarbons ranged from 200 to 453 h and 459-714 h respectively. All the bacteria efficiently produced catabolic enzymes such as alkane monooxygenase, alcohol dehydrogenase, and lipase during the degradation of crude oil. These findings indicated that the bacterial consortium can be a better candidate for bioremediation and reclamation of aliphatic and aromatics hydrocarbon contaminated sites.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/análise , Cinética , Meia-Vida , Solo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise
9.
Environ Sci Pollut Res Int ; 30(18): 51770-51781, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36820967

RESUMO

Indole is a nitrogenous heterocyclic aromatic pollutant often detected in various environments. An efficient indole degrading bacterium strain IITR89 was isolated from River Cauvery, India, and identified as Alcaligenes faecalis subsp. phenolicus. The bacterium was found to degrade ~ 95% of 2.5 mM (293.75 mg/L) of indole within 18 h utilizing it as a sole carbon and energy source. Based on metabolite identification, the metabolic route of indole degradation is indole → (indoxyl) → isatin → (anthranilate) → salicylic acid → (catechol) → (Acetyl-CoA) → and further entering into TCA cycle. Genome sequencing of IITR89 revealed the presence of gene cluster dmpKLMNOP, encoding multicomponent phenol hydroxylase; andAbcd gene cluster, encoding anthranilate 1,2-dioxygenase ferredoxin subunit (andAb), anthranilate 1,2-dioxygenase large subunit (andAc), and anthranilate 1,2-dioxygenase small subunit (andAd); nahG, salicylate hydroxylase; catA, catechol 1,2-dioxygenase; catB, cis, cis-muconate cycloisomerase; and catC, muconolactone D-isomerase which play an active role in indole degradation. The findings strongly support the degradation potential of strain IITR89 and its possible application for indole biodegradation.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Genômica , Indóis/metabolismo
10.
J Hazard Mater ; 441: 129906, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36088882

RESUMO

For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.


Assuntos
Praguicidas , Poluentes do Solo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Ecossistema , Estudos de Viabilidade , Humanos , Praguicidas/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Água
11.
Environ Epidemiol ; 6(3): e213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702505

RESUMO

Background: Chemical leakages cause devastating health effects on humans. On 6 February 2020, seven deaths were reported following a hazardous chemical leakage in a village in Uttar Pradesh, India. We investigated the event to identify the cause and propose recommendations. Methods: We defined a case as sudden onset of breathlessness, headache, or death in the village, 6-7 February 2020. We conducted a house-to-house case search and calculated attack rate (AR) and case-fatality rate (CFR) by age and gender. We conducted an environmental investigation at the leakage site and sent the chemicals for forensic analysis. We obtained the cause of death through autopsy reports. Results: Out of 2,942 residents, we identified 23 cases (AR = 8/1,000) and seven deaths (CFR = 30%). The median age of the case was 42 years (range, 2-64 years). The AR was higher among males (14/1,000 [19/1,402]). All the 23 case-patients who were sleeping at the chemical leakage site or visited to witness the event developed symptoms, and all seven cases who were sleeping within 150 meters of the leakage site died. The environmental investigation revealed leakage of hazardous substances from the storage tank. Toxicology analysis confirmed the leaked chemical as Lindane (gamma-hexachlorocyclohexane), and autopsy reports confirmed the cause of death as asphyxia. Conclusions: Asphyxia following the leakage of Lindane from the storage tank possibly led to sudden deaths. We recommend using leak-proof tanks to ensure safe storage and disposal, law enforcement, and regulations to prevent people from staying close to chemical storage sites.

12.
Chemosphere ; 280: 130690, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162081

RESUMO

Persistence of hexachlorocyclohexane (HCH) pesticide is a major problem for its disposal. Soil microflora plays an important role in remediating contaminated sites. Keeping concepts of microbial- and phyto-remediation together, the difference between soil microflora with and without association of HCH accumulating plant species was studied. Metagenomic analysis among the non-plant soil (BS) (∑HCH 434.19 mg/g), rhizospheric soil of shrubs (RSS) (∑HCH 157.31 mg/g), and rhizospheric soil of trees (RSD) (∑HCH 105.39 mg/g) revealed significant differences in microbial communities. Shrubs and trees occurred at a long-term dumpsite accumulated α- and ß- HCH residues. Plant rhizospheric soils exhibited high richness and evenness with higher diversity indices compared to the non-plant soil. Order Rhizobiales was most abundant in all soils and Streptomycetales was absent in the BS soil. Proteobacteria and Ascomycota were highest in BS soil, while Actinobacteria was enriched in both the plant rhizospheric soil samples. In BS soil, Pseudomonas, Sordaria, Caulobacter, Magnetospirillum, Rhodospirillum were abundant. While, genera Actinoplanes, Streptomyces, Bradyrhizobium, Rhizobium, Azospirillum, Agrobacterium are abundant in RSD soil. Selected plants have accumulated HCH residues from soil and exerted positive impacts on soil microbial communities in HCH contaminated site. This study advocates microbe-assisted plant-based bioremediation strategy to remediate HCH contamination.


Assuntos
Microbiota , Poluentes do Solo , Biodegradação Ambiental , Hexaclorocicloexano/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
13.
Bioresour Technol ; 307: 123206, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240926

RESUMO

Two bacterial species with the ability to produce biosurfactants were isolated from a pesticide contaminated soil and identified as Planococcus rifietoensis IITR53 and Planococcus halotolerans IITR55. Formation of froth indicating the surfactant production was observed when grown in basal salt medium containing 2% glucose. The culture supernatant after 72 h showed reduction in surface tension from 72 N/m to 46 and 42 N/m for strain IITR53 and IITR55 with emulsification index of 51 and 54% respectively. The biosurfactant identified as rhamnolipid based on liquid chromatography-mass spectrometry analysis, was found to inhibit the growth of both gram- positive and negative pathogenic bacteria. Both the rhamnolipids at 40 mg/mL exhibited the release of extracellular DNA and protein content. Also at one third of the MIC, a significant generation of reactive oxygen species was recorded. These rhamnolipids effectively emulsified different vegetable oils suggesting their possible utilization as antimicrobial agent.


Assuntos
Glicolipídeos , Planococcus (Bactéria) , Bactérias , Pseudomonas aeruginosa , Tensoativos
14.
Environ Sci Pollut Res Int ; 27(22): 27268-27278, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31190304

RESUMO

The aim of the present study was to investigate biosurfactant production ability of five different polyaromatic hydrocarbon (PAH)-metabolizing bacteria, such as Ochrobactrum anthropi IITR07, Pseudomonas mendocina IITR46, Microbacterium esteraromaticum IITR47, Pseudomonas aeruginosa IITR48, and Stenotrophomonas maltophilia IITR87. These bacteria showed biosurfactant production using 2% glucose as rich substrate; strain IITR47 yielded the highest with 906 and 534 mg/L biosurfactant in the presence of naphthalene and crude oil as the unique carbon sources. P. aeruginosa IITR48 showed the least surface tension at 29 N/m and the highest emulsification index at 63%. The biosurfactants produced were identified as glycolipid and rhamnolipid based on Fourier transform infrared spectroscopy analysis. In particular, the biosurfactant produced by bacteria S. maltophilia IITR87 efficiently emulsified mustard oil with an E24 value of 56%. It was observed that, all five biosurfactants from these degrader strains removed 2.4-, 1.7-, 0.9-, 3.8-, and 8.3-fold, respectively, crude oil from contaminated cotton cloth. Rhamnolipid derived from IITR87 was most efficient, exhibiting highest desorption of crude oil. These biosurfactants exhibited good stability without significantly losing its emulsification ability under extreme conditions, thus can be employed for bioremediation of PAHs from diverse contaminated ecosystem. Graphical Abstract.


Assuntos
Petróleo/análise , Esgotos , Actinobacteria , Bactérias , Biodegradação Ambiental , Ecossistema , Microbacterium , Tensoativos
15.
Sci Total Environ ; 681: 413-423, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108361

RESUMO

Microbial communities play a crucial role in bioremediation of pollutants in contaminated ecosystem. In addition to pure culture isolation and bacterial 16S rRNA based community studies, the focus has now shifted employing the omics technologies enormously for understanding the microbial diversity and functional potential of soil samples. Our previous report on two pesticide-contaminated sites revealed the diversity of both culturable and unculturable bacteria. In the present study, we have observed distinct taxonomic and functional communities in contaminated soil with respect to an uncontaminated soil as control by using shotgun metagenomic sequencing method. Our data demonstrated that Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Acidobacteria significantly dominated the microbial diversity with their cumulative abundance percentage in the range of 98.61, 87.38, and 80.52 for Hindustan Insecticides Limited (HIL), India Pesticides Limited (IPL), and control respectively. Functional gene analysis demonstrated the presence of large number of both substrate specific upper pathway and common lower pathway degradative genes. Relatively lower number of genes was found encoding the degradation of styrene, atrazine, bisphenol, dioxin, and naphthalene. When three bacteria were augumentated with rhamnolipid (20-100 µM) and Triton X-100 (84-417 µM) surfactants in HIL soil, an enhanced degradation to 76%, 70%, and 58% of HCH, Endosulfan, and DDT respectively was achieved. The overall data obtained from two heavily contaminated soil suggest the versatility of the microbial communities for the xenobiotic pollutant degradation which may help in exploiting their potential applications in bioremediation.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Praguicidas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Índia , Microbiota
16.
Bioresour Technol ; 285: 121314, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30992159

RESUMO

Biosurfactants from the yeast strains Candida albicans SC5314 and Candida glabrata CBS138 were isolated and characterized. Surface tension of the cell-free broth was reduced from 72 N/m to 42 N/m and 55 N/m respectively. The biosurfactants showed emulsifying ability as the indices against castor oil were determined to be 51% and 53% for C. albicans and C. glabrata respectively and were found stable between pH 2 and 10, temperature 4-120 °C and salt concentration 2-14%. The partially purified surfactants were identified as sophorolipid using Fourier transform infrared spectroscopy. Isolated sophorolipid showed antibacterial properties against pathogenic bacteria and generated reactive oxygen species in Bacillus subtilis and Escherichia coli. Flow cytometric analysis revealed that 60 mg/L of C. glabrata biosurfactant killed 65.8% B. subtilis and 4% E. coli. The data here obtained indicates applications of biosurfactant focusing mainly as antimicrobial and therapeutic perspectives.


Assuntos
Antibacterianos , Candida , Emulsificantes , Escherichia coli , Tensoativos
17.
Bioresour Technol ; 272: 19-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30296609

RESUMO

Rhamnolipid produced from a Lysinibacillus sphaericus IITR51 was characterized and its ability for dissolution of hydrophobic pesticides were evaluated. L. sphaericus produced 1.6 g/L of an anionic biosurfactant that reduced surface tension from 72 N/m to 52 N/m with 48% emulsification index. The biosurfactant was found stable over a wide range of pH (4.0-10.0), temperature (4-100 °C), salt concentration (2-14%) and was identified as rhamnolipid. At the concentration of 90 mg/L rhamnolipid showed enhanced dissolution of α-, ß-endosulfan, and γ-hexachlorocyclohexane up to 7.2, 2.9, and 1.8 folds, respectively. The bacterium utilized benzoic acid, chlorobenzene, 3- and 4-chlorobenzoic acid as sole source of carbon and was found resistant to arsenic, lead and cadmium. Furthermore, the isolated biosurfactant showed antimicrobial activities against different pathogenic bacteria. The results obtained indicate the usefulness of rhamnolipid for enhanced dissolution and thereby increasing the bioavailability.


Assuntos
Bacillus/química , Glicolipídeos/química , Praguicidas/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Tensão Superficial , Temperatura
20.
Bioresour Technol ; 254: 174-179, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29413920

RESUMO

In this study, we report the ability of Stenotrophomonas maltophilia, Ochrobactrum anthropi, Pseudomonas mendocina, Microbacterium esteraromaticum and Pseudomonas aeruginosa to degrade multiple polycyclic aromatic hydrocarbons (PAHs) present in crude oil. The PAHs in the crude oil sample obtained from Digboi oil refinery, India were estimated to be naphthalene (10.0 mg L-1), fluorene (1.9 mg L-1), phenanthrene (3.5 mg L-1) and benzo(b)fluoranthene (6.5 mg L-1). Exposure of individual bacteria to crude oil showed high rate of biodegradation of specific PAHs by M. esteraromaticum, 81.4%-naphthalene; P. aeruginosa, 67.1%-phenanthrene and 61.0%-benzo(b)fluoranthene; S. maltophilia, 47.9%-fluorene in 45 days. However, consortium of these bacteria showed enhanced biodegradation of 89.1%-naphthalene, 63.8%-fluorene, 81% of phenanthrene and 72.8% benzo(b)fluoranthene in the crude oil. The degradation was further improved up to 10% by consortium on addition of 40 µg mL-1 rhamnolipid JBR-425 biosurfactant. These results suggest that the developed bacterial consortium has significant potential in PAH remediation.


Assuntos
Biodegradação Ambiental , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA