Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
MethodsX ; 13: 102834, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39071997

RESUMO

The use of technology in healthcare is one of the most critical application areas today. With the development of medical applications, people's quality of life has improved. However, it is impractical and unnecessary for medium-risk people to receive specialized daily hospital monitoring. Due to their health status, they will be exposed to a high risk of severe health damage or even life-threatening conditions without monitoring. Therefore, remote, real-time, low-cost, wearable, and effective monitoring is ideal for this problem. Many researchers mentioned that their studies could use electrocardiogram (ECG) detection to discover emergencies. However, how to respond to discovered emergencies in household life is still a research gap in this field.•This paper proposes a real-time monitoring of ECG signals and sending them to the cloud for Sudden Cardiac Death (SCD) prediction.•Unlike previous studies, the proposed system has an additional emergency response mechanism to alert nearby community healthcare workers when SCD is predicted to occur.

2.
Heliyon ; 10(10): e31488, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826726

RESUMO

Skin cancer is a pervasive and potentially life-threatening disease. Early detection plays a crucial role in improving patient outcomes. Machine learning (ML) techniques, particularly when combined with pre-trained deep learning models, have shown promise in enhancing the accuracy of skin cancer detection. In this paper, we enhanced the VGG19 pre-trained model with max pooling and dense layer for the prediction of skin cancer. Moreover, we also explored the pre-trained models such as Visual Geometry Group 19 (VGG19), Residual Network 152 version 2 (ResNet152v2), Inception-Residual Network version 2 (InceptionResNetV2), Dense Convolutional Network 201 (DenseNet201), Residual Network 50 (ResNet50), Inception version 3 (InceptionV3), For training, skin lesions dataset is used with malignant and benign cases. The models extract features and divide skin lesions into two categories: malignant and benign. The features are then fed into machine learning methods, including Linear Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Tree (DT), Logistic Regression (LR) and Support Vector Machine (SVM), our results demonstrate that combining E-VGG19 model with traditional classifiers significantly improves the overall classification accuracy for skin cancer detection and classification. Moreover, we have also compared the performance of baseline classifiers and pre-trained models with metrics (recall, F1 score, precision, sensitivity, and accuracy). The experiment results provide valuable insights into the effectiveness of various models and classifiers for accurate and efficient skin cancer detection. This research contributes to the ongoing efforts to create automated technologies for detecting skin cancer that can help healthcare professionals and individuals identify potential skin cancer cases at an early stage, ultimately leading to more timely and effective treatments.

3.
PLoS One ; 19(2): e0297548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330004

RESUMO

Software Defined Network (SDN) has alleviated traditional network limitations but faces a significant challenge due to the risk of Distributed Denial of Service (DDoS) attacks against an SDN controller, with current detection methods lacking evaluation on unrealistic SDN datasets and standard DDoS attacks (i.e., high-rate DDoS attack). Therefore, a realistic dataset called HLD-DDoSDN is introduced, encompassing prevalent DDoS attacks specifically aimed at an SDN controller, such as User Internet Control Message Protocol (ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). This SDN dataset also incorporates diverse levels of traffic fluctuations, representing different traffic variation rates (i.e., high and low rates) in DDoS attacks. It is qualitatively compared to existing SDN datasets and quantitatively evaluated across all eight scenarios to ensure its superiority. Furthermore, it fulfils the requirements of a benchmark dataset in terms of size, variety of attacks and scenarios, with significant features that highly contribute to detecting realistic SDN attacks. The features of HLD-DDoSDN are evaluated using a Deep Multilayer Perception (D-MLP) based detection approach. Experimental findings indicate that the employed features exhibit high performance in the detection accuracy, recall, and precision of detecting high and low-rate DDoS flooding attacks.


Assuntos
Benchmarking , Terapia Implosiva , Inundações , Internet , Software
4.
Sci Rep ; 14(1): 4947, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418484

RESUMO

Internet of Things (IoT) paves the way for the modern smart industrial applications and cities. Trusted Authority acts as a sole control in monitoring and maintaining the communications between the IoT devices and the infrastructure. The communication between the IoT devices happens from one trusted entity of an area to the other by way of generating security certificates. Establishing trust by way of generating security certificates for the IoT devices in a smart city application can be of high cost and expensive. In order to facilitate this, a secure group authentication scheme that creates trust amongst a group of IoT devices owned by several entities has been proposed. The majority of proposed authentication techniques are made for individual device authentication and are also utilized for group authentication; nevertheless, a unique solution for group authentication is the Dickson polynomial based secure group authentication scheme. The secret keys used in our proposed authentication technique are generated using the Dickson polynomial, which enables the group to authenticate without generating an excessive amount of network traffic overhead. IoT devices' group authentication has made use of the Dickson polynomial. Blockchain technology is employed to enable secure, efficient, and fast data transfer among the unique IoT devices of each group deployed at different places. Also, the proposed secure group authentication scheme developed based on Dickson polynomials is resistant to replay, man-in-the-middle, tampering, side channel and signature forgeries, impersonation, and ephemeral key secret leakage attacks. In order to accomplish this, we have implemented a hardware-based physically unclonable function. Implementation has been carried using python language and deployed and tested on Blockchain using Ethereum Goerli's Testnet framework. Performance analysis has been carried out by choosing various benchmarks and found that the proposed framework outperforms its counterparts through various metrics. Different parameters are also utilized to assess the performance of the proposed blockchain framework and shows that it has better performance in terms of computation, communication, storage and latency.

5.
PLoS One ; 18(10): e0292690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889892

RESUMO

The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.


Assuntos
Privacidade , Telemedicina , Segurança Computacional , Confidencialidade , Tecnologia sem Fio
6.
Sci Rep ; 13(1): 18422, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891186

RESUMO

The emergence of drone-based innovative cyber security solutions integrated with the Internet of Things (IoT) has revolutionized navigational technologies with robust data communication services across multiple platforms. This advancement leverages machine learning and deep learning methods for future progress. In recent years, there has been a significant increase in the utilization of IoT-enabled drone data management technology. Industries ranging from industrial applications to agricultural advancements, as well as the implementation of smart cities for intelligent and efficient monitoring. However, these latest trends and drone-enabled IoT technology developments have also opened doors to malicious exploitation of existing IoT infrastructures. This raises concerns regarding the vulnerability of drone networks and security risks due to inherent design flaws and the lack of cybersecurity solutions and standards. The main objective of this study is to examine the latest privacy and security challenges impacting the network of drones (NoD). The research underscores the significance of establishing a secure and fortified drone network to mitigate interception and intrusion risks. The proposed system effectively detects cyber-attacks in drone networks by leveraging deep learning and machine learning techniques. Furthermore, the model's performance was evaluated using well-known drones' CICIDS2017, and KDDCup 99 datasets. We have tested the multiple hyperparameter parameters for optimal performance and classify data instances and maximum efficacy in the NoD framework. The model achieved exceptional efficiency and robustness in NoD, specifically while applying B-LSTM and LSTM. The system attains precision values of 89.10% and 90.16%, accuracy rates up to 91.00-91.36%, recall values of 81.13% and 90.11%, and F-measure values of 88.11% and 90.19% for the respective evaluation metrics.

7.
PLoS One ; 18(6): e0287291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352258

RESUMO

Fifth-generation (5G)-enabled vehicular fog computing technologies have always been at the forefront of innovation because they support smart transport like the sharing of traffic data and cooperative processing in the urban fabric. Nevertheless, the most important factors limiting progress are concerns over message protection and safety. To cope with these challenges, several scholars have proposed certificateless authentication schemes with pseudonyms and traceability. These schemes avoid complicated management of certificate and escrow of key in the public key infrastructure-based approaches in the identity-based approaches, respectively. Nevertheless, problems such as high communication costs, security holes, and computational complexity still exist. Therefore, this paper proposes an efficient certificateless authentication called the ECA-VFog scheme for fog computing with 5G-assisted vehicular systems. The proposed ECA-VFog scheme applied efficient operations based on elliptic curve cryptography that is supported by a fog server through a 5G-base station. This work conducts a safety analysis of the security designs to analysis the viability and value of the proposed ECA-VFog scheme. In the performance ovulation section, the computation costs for signing and verification process are 2.3539 ms and 1.5752 ms, respectively. While, the communication costs and energy consumption overhead of the ECA-VFog are 124 bytes and 25.610432 mJ, respectively. Moreover, comparing the ECA-VFog scheme to other existing schemes, the performance estimation reveals that it is more cost-effective with regard to computation cost, communication cost, and energy consumption.


Assuntos
Segurança Computacional , Confidencialidade , Algoritmos , Comunicação
8.
Sensors (Basel) ; 23(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37177643

RESUMO

Software-defined networking (SDN) is a revolutionary innovation in network technology with many desirable features, including flexibility and manageability. Despite those advantages, SDN is vulnerable to distributed denial of service (DDoS), which constitutes a significant threat due to its impact on the SDN network. Despite many security approaches to detect DDoS attacks, it remains an open research challenge. Therefore, this study presents a systematic literature review (SLR) to systematically investigate and critically analyze the existing DDoS attack approaches based on machine learning (ML), deep learning (DL), or hybrid approaches published between 2014 and 2022. We followed a predefined SLR protocol in two stages on eight online databases to comprehensively cover relevant studies. The two stages involve automatic and manual searching, resulting in 70 studies being identified as definitive primary studies. The trend indicates that the number of studies on SDN DDoS attacks has increased dramatically in the last few years. The analysis showed that the existing detection approaches primarily utilize ensemble, hybrid, and single ML-DL. Private synthetic datasets, followed by unrealistic datasets, are the most frequently used to evaluate those approaches. In addition, the review argues that the limited literature studies demand additional focus on resolving the remaining challenges and open issues stated in this SLR.

9.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050601

RESUMO

Several researchers have proposed secure authentication techniques for addressing privacy and security concerns in the fifth-generation (5G)-enabled vehicle networks. To verify vehicles, however, these conditional privacy-preserving authentication (CPPA) systems required a roadside unit, an expensive component of vehicular networks. Moreover, these CPPA systems incur exceptionally high communication and processing costs. This study proposes a CPPA method based on fog computing (FC), as a solution for these issues in 5G-enabled vehicle networks. In our proposed FC-CPPA method, a fog server is used to establish a set of public anonymity identities and their corresponding signature keys, which are then preloaded into each authentic vehicle. We guarantee the security of the proposed FC-CPPA method in the context of a random oracle. Our solutions are not only compliant with confidentiality and security standards, but also resistant to a variety of threats. The communication costs of the proposal are only 84 bytes, while the computation costs are 0.0031, 2.0185 to sign and verify messages. Comparing our strategy to similar ones reveals that it saves time and money on communication and computing during the performance evaluation phase.

10.
Digit Health ; 9: 20552076221150741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655183

RESUMO

Cardiovascular disease is one of the main causes of death worldwide which can be easily diagnosed by listening to the murmur sound of heartbeat sounds using a stethoscope. The murmur sound happens at the Lub-Dub, which indicates there are abnormalities in the heart. However, using the stethoscope for listening to the heartbeat sound requires a long time of training then only the physician can detect the murmuring sound. The existing studies show that young physicians face difficulties in this heart sound detection. Use of computerized methods and data analytics for detection and classification of heartbeat sounds will improve the overall quality of sound detection. Many studies have been worked on classifying the heartbeat sound; however, they lack the method with high accuracy. Therefore, this research aims to classify the heartbeat sound using a novel optimized Adaptive Neuro-Fuzzy Inferences System (ANFIS) by artificial bee colony (ABC). The data is cleaned, pre-processed, and MFCC is extracted from the heartbeat sounds. Then the proposed ABC-ANFIS is used to run the pre-processed heartbeat sound, and accuracy is calculated for the model. The results indicate that the proposed ABC-ANFIS model achieved 93% accuracy for the murmur class. The proposed ABC-ANFIS has higher accuracy in compared to ANFIS, PSO ANFIS, SVM, KSTM, KNN, and other existing studies. Thus, this study can assist physicians to classify heartbeat sounds for detecting cardiovascular disease in the early stages.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36497709

RESUMO

The COVID-19 pandemic is currently having disastrous effects on every part of human life everywhere in the world. There have been terrible losses for the entire human race in all nations and areas. It is crucial to take good precautions and prevent COVID-19 because of its high infectiousness and fatality rate. One of the key spreading routes has been identified to be transportation systems. Therefore, improving infection tracking and healthcare monitoring for high-mobility transportation systems is impractical for pandemic control. In order to enhance driving enjoyment and road safety, 5G-enabled vehicular fog computing may gather and interpret pertinent vehicle data, which open the door to non-contact autonomous healthcare monitoring. Due to the urgent need to contain the automotive pandemic, this paper proposes a COVID-19 vehicle based on an efficient mutual authentication scheme for 5G-enabled vehicular fog computing. The proposed scheme consists of two different aspects of the special flag, SF = 0 and SF = 1, denoting normal and COVID-19 vehicles, respectively. The proposed scheme satisfies privacy and security requirements as well as achieves COVID-19 and healthcare solutions. Finally, the performance evaluation section shows that the proposed scheme is more efficient in terms of communication and computation costs as compared to most recent related works.


Assuntos
COVID-19 , Segurança Computacional , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , Privacidade , Atenção à Saúde
12.
Sensors (Basel) ; 22(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35808521

RESUMO

The security and privacy concerns in vehicular communication are often faced with schemes depending on either elliptic curve (EC) or bilinear pair (BP) cryptographies. However, the operations used by BP and EC are time-consuming and more complicated. None of the previous studies fittingly tackled the efficient performance of signing messages and verifying signatures. Therefore, a chaotic map-based conditional privacy-preserving authentication (CM-CPPA) scheme is proposed to provide communication security in 5G-enabled vehicular networks in this paper. The proposed CM-CPPA scheme employs a Chebyshev polynomial mapping operation and a hash function based on a chaotic map to sign and verify messages. Furthermore, by using the AVISPA simulator for security analysis, the results of the proposed CM-CPPA scheme are good and safe against general attacks. Since EC and BP operations do not employ the proposed CM-CPPA scheme, their performance evaluation in terms of overhead such as computation and communication outperforms other most recent related schemes. Ultimately, the proposed CM-CPPA scheme decreases the overhead of computation of verifying the signatures and signing the messages by 24.2% and 62.52%, respectively. Whilst, the proposed CM-CPPA scheme decreases the overhead of communication of the format tuple by 57.69%.


Assuntos
Segurança Computacional , Privacidade , Algoritmos , Comunicação , Confidencialidade
13.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270843

RESUMO

Existing identity-based schemes utilized in Vehicular Ad hoc Networks (VANETs) rely on roadside units to offer conditional privacy-preservation authentication and are vulnerable to insider attacks. Achieving rapid message signing and verification for authentication is challenging due to complex operations, such as bilinear pairs. This paper proposes a secure pseudonym-based conditional privacy-persevering authentication scheme for communication security in VANETs. The Elliptic Curve Cryptography (ECC) and secure hash cryptographic function were used in the proposed scheme for signing and verifying messages. After a vehicle receives a significant amount of pseudo-IDs and the corresponding signature key from the Trusted Authority (TA), it uses them to sign a message during the broadcasting process. Thus, the proposed scheme requires each vehicle to check all the broadcasting messages received. Besides, in the proposed scheme, the TA can revoke misbehaving vehicles from continuously broadcasting signed messages, thus preventing insider attacks. The security analysis proved that the proposed scheme fulfilled the security requirements, including identity privacy-preservation, message integrity and authenticity, unlinkability, and traceability. The proposed scheme also withstood common security attacks such as man-in-the-middle, impersonation, modification, and replay attacks. Besides, our scheme was resistant against an adaptive chosen-message attack under the random oracle model. Furthermore, our scheme did not employ bilinear pairing operations; therefore, the performance analysis and comparison showed a lower resulting overhead than other identity-based schemes. The computation costs of the message signing, individual signature authentication, and batch signature authentication were reduced by 49%, 33.3%, and 90.2%, respectively.


Assuntos
Anônimos e Pseudônimos , Privacidade , Comunicação , Segurança Computacional , Humanos
14.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960311

RESUMO

Communications between nodes in Vehicular Ad-Hoc Networks (VANETs) are inherently vulnerable to security attacks, which may mean disruption to the system. Therefore, the security and privacy issues in VANETs are entitled to be the most important. To address these issues, the existing Conditional Privacy-Preserving Authentication (CPPA) schemes based on either public key infrastructure, group signature, or identity have been proposed. However, an attacker could impersonate an authenticated node in these schemes for broadcasting fake messages. Besides, none of these schemes have satisfactorily addressed the performance efficiency related to signing and verifying safety traffic-related messages. For resisting impersonation attacks and achieving better performance efficiency, a Secure and Efficient Conditional Privacy-Preserving Authentication (SE-CPPA) scheme is proposed in this paper. The proposed SE-CPPA scheme is based on the cryptographic hash function and bilinear pair cryptography for the signing and verifying of messages. Through security analysis and comparison, the proposed SE-CPPA scheme can accomplish security goals in terms of formal and informal analysis. More precisely, to resist impersonation attacks, the true identity of the vehicle stored in the tamper-proof device (TPD) is frequently updated, having a short period of validity. Since the MapToPoint hash function and a large number of cryptography operations are not employed, simulation results show that the proposed SE-CPPA scheme outperforms the existing schemes in terms of computation and communication costs. Finally, the proposed SE-CPPA scheme reduces the computation costs of signing the message and verifying the message by 99.95% and 35.93%, respectively. Meanwhile, the proposed SE-CPPA scheme reduces the communication costs of the message size by 27.3%.

15.
PLoS One ; 14(4): e0214518, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939154

RESUMO

An efficiently unlimited address space is provided by Internet Protocol version 6 (IPv6). It aims to accommodate thousands of hundreds of unique devices on a similar link. This can be achieved through the Duplicate Address Detection (DAD) process. It is considered one of the core IPv6 network's functions. It is implemented to make sure that IP addresses do not conflict with each other on the same link. However, IPv6 design's functions are exposed to security threats like the DAD process, which is vulnerable to Denial of Service (DoS) attack. Such a threat prevents the host from configuring its IP address by responding to each Neighbor Solicitation (NS) through fake Neighbor Advertisement (NA). Various mechanisms have been proposed to secure the IPv6 DAD procedure. The proposed mechanisms, however, suffer from complexity, high processing time, and the consumption of more resources. The experiments-based findings revealed that all the existing mechanisms had failed to secure the IPv6 DAD process. Therefore, DAD-match security technique is proposed in this study to efficiently secure the DAD process consuming less processing time. DAD-match is built based on SHA-3 to hide the exchange tentative IP among hosts throughout the process of DAD in an IPv6 link-local network. The obtained experimental results demonstrated that the DAD-match security technique achieved less processing time compared with the existing mechanisms as it can resist a range of different threats like collision and brute-force attacks. The findings concluded that the DAD-match technique effectively prevents the DoS attack during the DAD process. The DAD-match technique is implemented on a small area IPv6 network; hence, the author future work is to implement and test the DAD-match technique on a large area IPv6 network.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Segurança Computacional , Tecnologia sem Fio , Algoritmos , Simulação por Computador , Sistemas Computacionais , Coleta de Dados , Armazenamento e Recuperação da Informação/métodos , Internet , Registros
16.
Int J Med Inform ; 68(1-3): 187-203, 2002 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-12467802

RESUMO

Case-based reasoning (CBR)-driven medical diagnostic systems demand a critical mass of up-to-date diagnostic-quality cases that depict the problem-solving methodology of medical experts. In practical terms, procurement of CBR-compliant cases is quite challenging, as this requires medical experts to map their experiential knowledge to an unfamiliar computational formalism. In this paper, we propose a novel medical knowledge acquisition approach that leverages routinely generated electronic medical records (EMRs) as an alternate source for CBR-compliant cases. We present a methodology to autonomously transform XML-based EMR to specialized CBR-compliant cases for CBR-driven medical diagnostic systems. Our multi-stage methodology features: (a) collection of heterogeneous EMR from Internet-accessible EMR repositories via intelligent agents, (b) automated transformation of both the structure and content of generic EMR to specialized CBR-compliant cases, and (c) inductive estimation of the weight of each case-defining attribute. The computational implementation of our methodology is presented as case acquisition and transcription info-structure (CATI).


Assuntos
Inteligência Artificial , Computação em Informática Médica , Sistemas Computadorizados de Registros Médicos , Humanos , Lógica , Resolução de Problemas , Descritores , Unified Medical Language System , Vocabulário Controlado
17.
Stud Health Technol Inform ; 90: 335-40, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-15460713

RESUMO

This paper presents a case for an intelligent agent based framework for knowledge discovery in a distributed healthcare environment comprising multiple heterogeneous healthcare data repositories. Data-mediated knowledge discovery, especially from multiple heterogeneous data resources, is a tedious process and imposes significant operational constraints on end-users. We demonstrate that autonomous, reactive and proactive intelligent agents provide an opportunity to generate end-user oriented, packaged, value-added decision-support/strategic planning services for healthcare professionals, manages and policy makers, without the need for a priori technical knowledge. Since effective healthcare is grounded in good communication, experience sharing, continuous learning and proactive actions, we use intelligent agents to implement an Agent based Data Mining Infostructure that provides a suite of healthcare-oriented decision-support/strategic planning services.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Informática Médica , Eficiência Organizacional , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA