Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13721, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877078

RESUMO

The beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), has become a significant pest of chickpea in recent years. The polyphagous nature allows it to survive on various hosts during the off-season, creating a great menace to the crop in the following season. To assess the incidence and document the alternate hosts of S. exigua, a rapid roving survey was conducted in 11 chickpea-growing areas of Prakasam district, Andhra Pradesh, India. Additionally, the life history traits of S. exigua were studied on major alternate host plants under laboratory conditions (27 ± 1 °C and 70 ± 2% RH) to understand the survival, life expectancy and potential contribution to future populations. The results show that, among the different crops surveyed, the maximum larval incidence was noticed in maize (1.93 larvae/plant), cowpea (1.73 larvae/plant), and sunflower (1.68 larvae/plant) during the off-season. Life history studies of S. exigua showed that highest larval survival percentage was observed on chickpea (83.6%), while the lowest was on maize (44.5%). The mean developmental time for larvae was longest on maize (27.1 days) and shortest on chickpea (14.9 days). Larvae did not develop beyond the third instar when fed with chilli. The growth index statistics showed chickpea (9.2) was the most suitable host plant, whereas maize (0.9) was the least suitable host. The age-stage-specific survival rate (Sxj) varied across developmental stages, and the survival curves overlapped, indicating different growth rates among individuals. The life expectancy (exj) at age zero was highest on groundnut (37.06 days). The intrinsic rate of increase (r) of S. exigua was lowest on maize (0.10 ± 0.0013) and highest on chickpea (0.22 ± 0.0010). Similarly, the net reproductive rate (R0) was highest on chickpea (846.39 ± 18.22) and lowest on maize (59.50 ± 2.06). The population doubled every 3.08 ± 0.011 days on chickpea compared to 7.22 ± 0.80 days on maize. The study conclusively indicates that chickpea and sunflower, primarily cultivated during the rabi season in India, are the most preferred hosts for S. exigua. In contrast, maize and cotton, mainly grown during the kharif season, are less preferred and merely support the pest's survival. Consequently, S. exigua switches hosts between different crops growing seasons, so effective management of S. exigua during the kharif season can help prevent pest outbreaks during the rabi season.


Assuntos
Cicer , Larva , Estações do Ano , Spodoptera , Animais , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia , Larva/crescimento & desenvolvimento , Cicer/parasitologia , Produtos Agrícolas/parasitologia , Índia , Zea mays/parasitologia , Vigna/parasitologia , Vigna/crescimento & desenvolvimento
2.
Sci Rep ; 14(1): 7118, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532112

RESUMO

Invasive alien species (IAS) pose a severe threat to global agriculture, with their impact projected to escalate due to climate change and expanding international trade. The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), a native of the Americas, has rapidly spread across various continents, causing significant damage to several food crops, especially maize. Integrated pest management (IPM) programs are vital for sustainable FAW control, combining multiple strategies for sustainable results. Over three consecutive years, 2019-20, 2020-21 and 2021-22, the field demonstrations were conducted in semiarid regions of India, testing a four-component IPM approach viz., pheromone traps, microbial, botanicals and ETL based applications of insecticides against farmers' practices (sole insecticide application). IPM implementation led to substantial reductions in FAW infestation. Furthermore, egg mass and larvae infestations were significantly lower in IPM-adopted villages compared to conventional practices. Pheromone-based monitoring demonstrated a consistent reduction in adult moth populations. The lowest technology gap (10.42), extension gap (8.33) and technology index (12.25) was recorded during 2020-21. The adoption of IPM led to increased maize yields (17.49, 12.62 and 24.87% over control), higher net returns (919, 906.20 and 992.93 USD), and favourable benefit-cost ratios (2.74, 2.39 and 2.33) compared to conventional practices respectively during 2019-20, 2020-21 and 2021-22. The economic viability of IPM strategies was evident across three consecutive years, confirming their potential for sustainable FAW management in the semiarid region of India. These strategies hold promise for adoption in other parts of the world sharing similar climatic conditions.


Assuntos
Fazendeiros , Inseticidas , Animais , Humanos , Spodoptera , Zea mays , Comércio , Internacionalidade , Controle de Pragas , Índia , Feromônios
3.
Heliyon ; 10(1): e23648, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187271

RESUMO

The cotton mealybug, Phenacoccus solenopsis Tinsley and papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae) are becoming major threats to the production of Gymnema sylvestre R. Br. (Asclepiadaceae) in India. Management mainly depends on chemical insecticides which cause a serious problem of pesticide residue and insecticide resistance. The use of biorational insecticides such as biopesticides, botanicals, insect growth regulators, and microbial insecticides is important components of an Integrated Pest Management (IPM) program for successful management. We evaluated the bio-efficacy of twelve biorational insecticides, including entomopathogenic fungi (EPF), using the leaf spray method in laboratory conditions at 25 ± 1 °C, 70 % ± 5 % RH. The results revealed that the highest percent mortality was recorded by acetamiprid 20 % SP (100.00 %), followed by azadirachtin (98.27 %), Lecanicillium muscarium (2 × 109 spores/mL) (85.70 %) and Ocimum sanctum leaf extract (76.87 %) at 120 h after treatment (HAT) in P. solenopsis. In P. marginatus, 100.00 %, 96.39 % and 85.67 % and 74.90 % mortalities were achieved by acetamiprid 20 % SP, azadirachtin, L. muscarium (2 × 109 spores/mL) and O. sanctum leaf extract, respectively, at 120 HAT during the first spray. Various biorational insecticides showed a more or less similar trend of percent mortality in both species during the second spray. In both species, the lowest percent mortality was recorded by Andrographis paniculata leaf extract (46.29, 44.54) and (41.03, 46.39) at 120 Hours after treatment in the first and second spray, respectively. It was concluded that all the prescribed treatments are more effective than the control. Overall, azadirachtin recorded the highest percent mortality after acetamiprid and had the shortest LT50 (12.52 h) and (13.87 h) values in P. solenopsis and P. marginatus, respectively. Our study emphasizes that biopesticides like Azadirachtin 1 % EC (10000 ppm), L. muscarium (2 × 109 spores/mL) (5 mL/L) and O. sanctum leaf extract (5 %) may be recommended as alternatives to synthetic insecticides. Botanicals and EPF would be the most effective approach for sustainable integrated management of P. solenopsis and P. marginatus in the G. sylvestre ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA