Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 157: 111366, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761626

RESUMO

More than 5.8 million tonnes of oil have been spilled into the oceans. Some oil disasters marked history, causing multiple social and economic consequences in addition to catastrophic environmental impacts. Recently, Brazil and Mauritius faced oil disasters that have severely impacted seafood sanitary credibility. One of the components of the oil composition are the polycyclic aromatic hydrocarbons (PAH), which are the main contamination markers of petrogenic origin. There is enough evidence to correlate the intake of food contaminated with PAH with increased risks of developing cancer. The set PAH4, composed of benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and chrysene, and the set PAH8, composed of benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, chrysene, dibenzo[a,h]anthracene, and indeno[1,2,3-cd]pyrene are recognized as markers of food chemical contamination. After oil disasters in the oceans, the risk to the health of seafood consumers tends to be of special concern, Countries like the European Union set maximum levels for benzo[a]pyrene (5 µg kg-1) and PAH4 (30 µg kg-1) in bivalve mollusks. Levels of concern established by countries that have faced oil disasters are given special attention in this review. Laboratory analysis of PAH in food samples is very challenging because it deals with quite different kinds of matrices. Furthermore, analytical results are usually related to the closure or reopening of cultivated areas and fishing points. Therefore, the progress of the analytical methods for PAH in seafood is covered in detail. Chemical laboratory measurements provide essential data to assess the potential risks to human health due to consumption of seafood contaminated with PAH. The main human health risk assessment approaches in a seafood contamination scenario with PAH are reviewed and discussed, providing an insightful and guiding tool to each step of the risk assessment framework.


Assuntos
Desastres , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Antracenos/análise , Benzo(a)pireno , Crisenos/análise , Inocuidade dos Alimentos , Humanos , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Vitae (Medellín) ; 25(1): 26-36, 2018. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-994930

RESUMO

Background: ß-glucans (1-3: 1-4) are soluble fibers applied to foods due to their technological properties (water binding capacity, viscosity, emulsification and stabilization) and their beneficial effects on health. The functional properties of ß-glucans can be lost during the extraction and purification processes. The high viscosity of ß-glucans is related to a high molecular weight and its physiological properties in the intestine. Therefore, to characterize the fiber after its extraction and purification is fundamental to understand its possible applications in foods. Objectives: characterize ß-glucans extracted (EßG) and compare them with three commercial ß-glucans (CßG-A, CßG-B and CßG-C) to identify its possible applications in foods and to evaluate if enzymatic purification affects molecular and structurally the ß-glucans. Methods: barley ß-glucans were extracted (EßG), characterized by chemical analyzes, rheological behavior, and color, and compared to three commercial ß-glucans samples. Then, the extract was purified and its structural and molecular characteristics were calculated. Results: EßG contained 64.38 ± 3.54% of ß-glucans, high starch contamination (12.70 ± 1.73%), high content of calcium (8894 mg/kg), pseudoplastic behavior, and dark color (L* = 52.77 ± 0.7). All commercial samples showed low starch contamination, lighter color, and Newtonian behavior. After purification starch and protein contamination decreased (0.85 ± 0.46% and 5.50 ± 0.12% respectively), increased the content of ßG (69.45 ± 0.81%) and increased brightness (L* = 92.60 ± 1.70). Purified ß-glucans (PßG) showed a molar weight of 690 ± 1.6 kDa and species with degree polymerization 3 (DP3) to 11 (DP11) were identified on the structure. Conclusions: EßG extracts before the purification presented a high viscosity and contamination. The enzymatic purification process was effective and allowed to maintain a high molar mass of PßG and its distinctive molecular structures (species with DP3 and DP4). The commercial samples CßG-A and CßG-B showed a low content of ß-glucans. Finally, CßG-C presented the best physicochemical and rheological properties for its subsequent application in food.


Antecedentes: los ß-glucanos (1-3: 1-4) son fibras solubles aplicadas a los alimentos debido a sus propiedades tecnológicas (capacidad de retención de agua, viscosidad, emulsificación y estabilización) y a sus efectos beneficiosos en la salud. Las propiedades funcionales de los ß-glucanos pueden perderse durante los procesos de extracción y purificación. La alta viscosidad de los ß-glucanos está relacionada con un alto peso molecular y con sus propiedades fisiológicas en el intestino. Por lo tanto, caracterizar la fibra después de su extracción y purificación es fundamental para comprender sus posibles aplicaciones en alimentos. Objetivos: caracterizar ß-glucanos extraídos (EßG) y compararlos con tres marcas comerciales (CßG-A, CßG-B y CßG-C) para identificar su futura aplicación en alimentos y evaluar si la purificación enzimática afecta molecular y estructuralmente los ß-glucanos. Métodos: se extrajeron ß-glucanos de cebada (EßG), caracterizados por análisis químicos, comportamiento reológico y color, y se compararon con tres muestras comerciales. Posteriormente, el extracto (EßG) se purificó y se identificaron sus características estructurales y su peso molecular. Resultados: EßG contenía 64.38 ± 3.54% de ß-glucanos, alta contaminación con almidón (12.70 ± 1.73%), alto contenido de calcio (8894 mg / kg), comportamiento pseudoplástico y color oscuro (L* = 52.77 ± 0.7). Todas las muestras comerciales mostraron una baja contaminación con almidón, color más claro y comportamiento newtoniano. Después de la purificación de EßG, la contaminación con almidón y proteína disminuyó (0.85 ± 0.46% y 5.50 ± 0.12%, respectivamente), aumentó el contenido de ßG (69.45 ± 0.81%) y aumentó su luminosidad (L* = 92.60 ± 1.70). Los ß-glucanos purificados (PßG) mostraron un peso molar de 690 ± 1,6 kDa y se identificaron en la estructura especies con grado de polimerización desde 3 (GP3) hasta 11 (GP11). Conclusiones: los EßG antes de la purificación presentaron alta viscosidad y contaminación. El proceso de purificación enzimática fue efectivo y permitió mantener una alta masa molar de la fibra y sus estructuras moleculares características (especies con GP3 y GP4). Las muestras comerciales CßG-A y CßG-B mostraron un bajo contenido de ß-glucanos. Finalmente, la CßG-C presentó las mejores propiedades fisicoquímicas y reológicas para su posterior aplicación en alimentos.


Assuntos
Humanos , beta-Glucanas , Viscosidade , Fibras na Dieta , Alimentos Integrais , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA