Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293207

RESUMO

Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously reported that intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated if EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) show a greater EV mitochondria delivery efficiency than cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that mBEC-EVs outperformed hBEC-EVs in transferring EV mitochondria to the recipient ischemic mBECs, and improved mBEC mitochondrial function via increasing oxygen consumption rate. mBEC-EVs significantly reduced brain infarct volume and improved behavioral recovery compared to vehicle-injected MCAo mice. Our data suggests that mBEC-EVs show superior therapeutic efficacy in a mouse MCAo stroke model compared to hBEC-EVs-supporting the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical studies.

2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902330

RESUMO

Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.


Assuntos
Dacriocistite , Aparelho Lacrimal , Feminino , Masculino , Camundongos , Animais , Aparelho Lacrimal/metabolismo , Dacriocistite/metabolismo , Envelhecimento , Inflamação/metabolismo , Parabiose
3.
J Control Release ; 354: 368-393, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642252

RESUMO

Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Proteínas de Choque Térmico HSP27/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Proteínas de Choque Térmico/metabolismo , AVC Isquêmico/metabolismo , Mitocôndrias/metabolismo , Vesículas Extracelulares/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Methods Mol Biol ; 2616: 453-465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715953

RESUMO

Stroke is a devastating brain injury resulting in high mortality and substantial loss of function, affecting >15 million people worldwide annually; the majority of which are over 65 years old (Feigin et al., Lancet 383:245-254, 2014; Feigin et al., Lancet Neurol 2:43-53, 2003; Benjamin et al., Circulation 135:e146-e603, 2017; Writing Group et al., Circulation 133:447-454, 2016; Roy-O'Reilly, McCullough, Endocrinology 159:3120-3131, 2018). Aging is a significant risk factor for stroke, and older patients have higher mortality and poorer functional recovery after stroke compared with younger patients (Arboix et al., J Am Geriatr Soc 48:36-41, 2000; Rojas et al., Eur J Neurol 14:895-899, 2007). Despite the importance of aging in the pathophysiology of stroke, the vast majority of preclinical studies have only used young animals. Understanding the mechanisms underlying stroke-induced brain damage and post-stroke functional recovery in aged animals is an urgent need. This step is essential to the development of therapeutics for treating stroke patients, most of whom are elderly. To understand the pathophysiology of ischemic injury induced by middle cerebral artery occlusion (MCAO), one of the most common type of stroke seen clinically (Writing Group et al., Circulation 133:e38-360, 2016), it is imperative to include older animals in preclinical testing. The purpose of this chapter is to provide insight on successfully reproducing MCAO injury in translationally relevant aged animals.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Infarto da Artéria Cerebral Média/complicações , Modelos Animais de Doenças , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/tratamento farmacológico , Envelhecimento , Artéria Cerebral Média
5.
Clin Transl Sci ; 15(1): 279-286, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463026

RESUMO

Acute ischemic stroke continues to devastate millions of individuals worldwide. Current treatments work to restore blood flow but not rescue affected tissue. Our goal was to develop a combination of neuroprotective agents administered intra-arterially following recanalization to target ischemic tissue. Using C57Bl/6J male mice, we performed tandem transient ipsilateral middle cerebral/common carotid artery occlusion, followed by immediate intra-arterial pharmacotherapy administration through a standardized protocol. Two pharmacotherapy agents, verapamil and lubeluzole, were selected based on their potential to modulate different aspects of the ischemic cascade; verapamil, a calcium channel blocker, works in an acute fashion blocking L-type calcium channels, whereas lubeluzole, an N-methyl-D-aspartate modulator, works in a delayed fashion blocking intracellular glutamate trafficking. We hypothesized that combination therapy would provide complimentary and potentially synergistic benefit treating brain tissue undergoing various stages of injury. Physiological measurements for heart rate and pulse distention (blood pressure) demonstrated no detrimental effects between groups, suggesting that the combination drug administration is safe. Tissue analysis demonstrated a significant difference between combination and control (saline) groups in infarct volume, neuronal health, and astrogliosis. Although a significant difference in functional outcome was not observed, we did note that the combination treatment group had a greater percent change from baseline in forced motor movement as compared with controls. This study demonstrates the safety and feasibility of intra-arterial combination therapy following successful recanalization and warrants further study.


Assuntos
Terapia Combinada , Infusões Intra-Arteriais , AVC Isquêmico/tratamento farmacológico , Animais , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Tiazóis/administração & dosagem , Tiazóis/farmacologia , Resultado do Tratamento , Verapamil/farmacologia
6.
Brain Behav Immun Health ; 14: 100260, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589766

RESUMO

Cerebral amyloid angiopathy (CAA) is one of the common causes of lobar intracerebral hemorrhage and vascular cognitive impairment (VCI) in the aging population. Increased amyloid plaque deposition within cerebral blood vessels, specifically the smooth muscle layer, is linked to increased cerebral microbleeds (CMBs) and impaired cognition in CAA. Studies in Alzheimer's disease (AD) have shown that amyloid plaque pathology is more prevalent in the brains of elderly women (2/3rd of the dementia population) compared with men, however, there is a paucity of studies on sex differences in CAA. The objective of this study was to discern the sexual dichotomies in CAA. We utilized male and female Tg-SwDI mice (mouse model of CAA) at 12-14 months of age for this study. We evaluated sex differences in CMBs, cognitive function and inflammation. Cognition was assessed using Y-maze (spatial working memory) and Fear Conditioning (contextual memory). CMBs were quantified by ex vivo brain MRI scans. Inflammatory cytokines in brain were quantified using ELISA. Our results demonstrated that aging Tg-SwDI female mice had a significantly higher burden of CMBs on MRI as compared to males. Interestingly, these aging Tg-SwDI female mice also had significantly impaired spatial and contextual memory on Y maze and Fear Conditioning respectively. Furthermore, female mice had significantly lower circulating inflammatory cytokines, IL-1α, IL-2, IL-9, and IFN-γ, as compared to males. Our results demonstrate that aging female Tg-SwDI mice are more cognitively impaired and have higher number of CMBs, as compared to males at 12-14 months of age. This may be secondary to reduced levels of neural repair cytokines (IL-1α, IL-2, IL-9 and IFN-γ) involved in sex specific inflammatory signaling in CAA.

7.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374156

RESUMO

Social isolation and loneliness are risk factors for stroke. Elderly women are more likely to be isolated. Census data shows that in homeowners over the age of 65, women are much more likely to live alone. However, the underlying mechanisms of the detrimental effects of isolation have not been well studied in older females. In this study, we hypothesized that isolation impairs post-stroke recovery in aged female mice, leading to dysregulated microRNAs (miRNAs) in the brain, including those previously shown to be involved in response to social isolation (SI). Aged C57BL/6 female mice were subjected to a 60-min middle cerebral artery occlusion and were randomly assigned to either single housing (SI) or continued pair housing (PH) immediately after stroke for 15 days. SI immediately after stroke led to significantly more brain tissue loss after stroke and higher mortality. Furthermore, SI significantly delayed motor and sensory recovery and worsened cognitive function, compared to PH. A decrease in cell proliferation was seen in the dentate gyrus of SI mice assessed by bromodeoxyuridine (BrdU) labeling. miRNAome data analysis revealed changes in several miRNAs in the brain, such as miR-297a-3p and miR-200c-3p, which are known to regulate pathways involved in cell proliferation. In conclusion, our data suggest that SI can lead to a poor post-stroke recovery in aged females and dysregulation of miRNAs and reduced hippocampal cell proliferation.


Assuntos
Envelhecimento/metabolismo , Proliferação de Células , Giro Denteado/metabolismo , MicroRNAs/metabolismo , Isolamento Social , Acidente Vascular Cerebral/metabolismo , Envelhecimento/patologia , Animais , Giro Denteado/patologia , Feminino , Camundongos , Acidente Vascular Cerebral/patologia
8.
J Neuroinflammation ; 16(1): 222, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727174

RESUMO

BACKGROUND: Stroke remains a leading cause of death and disability worldwide despite recent treatment breakthroughs. A primary event in stroke pathogenesis is the development of a potent and deleterious local and peripheral inflammatory response regulated by the pro-inflammatory cytokine interleukin-1 (IL-1). While the role of IL-1ß (main released isoform) has been well studied in stroke, the role of the IL-1α isoform remains largely unknown. With increasing utilization of intravenous tissue plasminogen activator (t-PA) or thrombectomy to pharmacologically or mechanically remove ischemic stroke causing blood clots, respectively, there is interest in pairing successful cerebrovascular recanalization with neurotherapeutic pharmacological interventions (Fraser et al., J Cereb Blood Flow Metab 37:3531-3543, 2017; Hill et al., Lancet Neurol 11:942-950, 2012; Amaro et al., Stroke 47:2874-2876, 2016). METHODS: Transient stroke was induced in mice via one of two methods. One group of mice were subjected to tandem ipsilateral common carotid artery and middle cerebral artery occlusion, while another group underwent the filament-based middle cerebral artery occlusion. We have recently developed an animal model of intra-arterial (IA) drug administration after recanalization (Maniskas et al., J Neurosci Met 240:22-27, 2015). Sub groups of the mice were treated with either saline or Il-1α, wherein the drug was administered either acutely (immediately after surgery) or subacutely (on the third day after stroke). This was followed by behavioral and histological analyses. RESULTS: We now show in the above-mentioned mouse stroke models (transient tandem ipsilateral common carotid artery (CCA) and middle cerebral artery occlusion (MCA) occlusion, MCA suture occlusion) that IL-1α is neuroprotective when acutely given either intravenously (IV) or IA at low sub-pathologic doses. Furthermore, while IV administration induces transient hemodynamic side effects without affecting systemic markers of inflammation, IA delivery further improves overall outcomes while eliminating these side effects. Additionally, we show that delayed/subacute IV IL-1α administration ameliorates functional deficit and promotes neurorepair. CONCLUSIONS: Taken together, our present study suggests for the first time that IL-1α could, unexpectedly, be an effective ischemic stroke therapy with a broad therapeutic window.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Interleucina-1alfa/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Interleucina-1alfa/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologia
9.
Geroscience ; 41(5): 543-559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31721012

RESUMO

Aging and stroke alter the composition of the basement membrane and reduce the perivascular distribution of cerebrospinal fluid and solutes, which may contribute to poor functional recovery in elderly patients. Following stroke, TGF-ß induces astrocyte activation and subsequent glial scar development. This is dysregulated with aging and could lead to chronic, detrimental changes within the basement membrane. We hypothesized that TGF-ß induces basement membrane fibrosis after stroke, leading to impaired perivascular CSF distribution and poor functional recovery in aged animals. We found that CSF entered the aged brain along perivascular tracts; this process was reduced by experimental stroke and was rescued by TGF-ß receptor inhibition. Brain fibronectin levels increased with experimental stroke, which was reversed with inhibitor treatment. Exogenous TGF-ß stimulation increased fibronectin expression, both in vivo and in primary cultured astrocytes. Oxygen-glucose deprivation of cultured astrocytes induced multiple changes in genes related to astrocyte activation and extracellular matrix production. Finally, in stroke patients, we found that serum TGF-ß levels correlated with poorer functional outcomes, suggesting that serum levels may act as a biomarker for functional recovery. These results support a potential new treatment strategy to enhance recovery in elderly stroke patients.


Assuntos
Membrana Basal/patologia , Líquido Cefalorraquidiano/metabolismo , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fator de Crescimento Transformador beta/farmacologia , Idoso , Animais , Benzamidas/farmacologia , Biomarcadores/sangue , Encéfalo/metabolismo , Feminino , Fibronectinas/metabolismo , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/sangue
10.
Neurobiol Aging ; 72: 1-13, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30172921

RESUMO

Cerebral amyloid angiopathy occurs after stroke, but the mechanism underlying the initial amyloid-ß deposition is not fully understood. This study investigates whether overexpression of fibronectin and its receptor, integrin-α5, induces the perivascular deposition of cerebrospinal fluid-derived amyloid-ß after stroke in young and aged animals. We found that stroke impaired the bulk flow of cerebrospinal fluid into the brain parenchyma and further showed that perivascular amyloid-ß deposition was enhanced in aged animals with stroke, which colocalized with integrin-α5 in the basement membrane. Furthermore, we found that stroke dramatically increased the cortical levels of fibronectin and integrin-α5, with further increases in integrin-α5 in aged animals with stroke, fibronectin bound amyloid-ß in vitro, and fibronectin administration increased amyloid-ß deposition in vivo. Finally, aging and stroke impaired performance on the Barnes maze. These results indicate that fibronectin induces the perivascular deposition of amyloid-ß and that increased integrin-α5 further "primes" the aged brain for amyloid-ß binding. This provides a novel molecular and physiological mechanism for perivascular amyloid-ß deposition after stroke, particularly in aged individuals.


Assuntos
Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Membrana Basal/metabolismo , Fibronectinas/metabolismo , Sistema Glinfático/metabolismo , Integrina alfa5beta1/metabolismo , Acidente Vascular Cerebral/metabolismo , Fatores Etários , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS One ; 13(4): e0195765, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649307

RESUMO

Bilateral carotid artery stenosis (BCAS) is one experimental model of vascular dementia thought to preferentially impact brain white matter. Indeed, few studies report hippocampal and cortical pathology prior to 30 days post-stenosis; though it is unclear whether those studies examined regions outside the white matter. Since changes in the blood-brain barrier (BBB) permeability precede more overt brain pathology in various diseases, we hypothesized that changes within the BBB and/or BBB-associated extracellular matrix (ECM) could occur earlier after BCAS in the hippocampus, cortex and striatum and be a precursor of longer term pathology. Here, C57Bl/6 mice underwent BCAS or sham surgeries and changes in the BBB and ECM were analyzed by collagen IV (vascular basement membrane component), α5 integrin (marker of endothelial activation), claudin-5 and occludin (tight junction proteins), Evans blue (permeability marker), Ki-67 (cell proliferation marker), and GFAP and CD11b (glial cell markers) immunohistochemistry after 14 days. Significant changes in markers of cerebrovascular integrity and glial activation were detected, not only in the striatum, but also in the hippocampus and cortex. In conclusion, this study demonstrates for the first time that changes in the BBB/ECM occur shortly after BCAS and within multiple brain regions and suggests such changes might underlie the gradual development of BCAS non-white matter pathology.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Estenose das Carótidas/complicações , Matriz Extracelular/metabolismo , Animais , Biomarcadores , Encéfalo/patologia , Proliferação de Células , Demência Vascular/etiologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Perfilação da Expressão Gênica , Imuno-Histoquímica , Inflamação , Masculino , Camundongos , Permeabilidade
12.
PLoS One ; 13(1): e0191312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324900

RESUMO

Moyamoya is a cerebrovascular disorder characterized by progressive stenosis of the intracranial internal carotid arteries. There are two forms: Disease and Syndrome, with each characterized by the sub-population it affects. Moyamoya syndrome (MMS) is more prominent in adults in their 20's-40's, and is often associated with autoimmune diseases. Currently, there are no surgical models for inducing moyamoya syndrome, so our aim was to develop a new animal model to study this relatively unknown cerebrovascular disease. Here, we demonstrate a new surgical technique termed internal carotid artery stenosis (ICAS), to mimic MMS using micro-coils on the proximal ICA. We tested for Moyamoya-like vasculopathies by fluorescently labelling the mouse cerebrovasculature with Di I for visualization and analysis of vessel diameter at the distal ICA and anastomoses on the cortical surface. Results show a significant narrowing of the distal ICA and anterior cerebral artery (ACA) in the Circle of Willis, as observed in humans. There is also a significant decrease in the number of anastomoses between the middle cerebral artery (MCA) and the ACA in the watershed region of the cortex. While further characterization is needed, this ICAS model can be applied to transgenic mice displaying co-morbidities as observed within the Moyamoya syndrome population, allowing a better understanding of the disease and development of novel treatments.


Assuntos
Artéria Carótida Interna/cirurgia , Estenose das Carótidas/cirurgia , Doença de Moyamoya/cirurgia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Neurointerv Surg ; 10(1): 29-33, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28031354

RESUMO

BACKGROUND: Nitroglycerin (also known as glyceryl trinitrate (GTN)), a vasodilator best known for treatment of ischemic heart disease, has also been investigated for its potential therapeutic benefit in ischemic stroke. The completed Efficacy of Nitric Oxide in Stroke trial suggested that GTN has therapeutic benefit with acute (within 6 hours) transdermal systemic sustained release therapy. OBJECTIVE: To examine an alternative use of GTN as an acute therapy for ischemic stroke following successful recanalization. METHODS: We administered GTN IA following transient middle cerebral artery occlusion in mice. Because no standard dose of GTN is available following emergent large vessel occlusion, we performed a dose-response (3.12, 6.25, 12.5, and 25 µg/µL) analysis. Next, we looked at blood perfusion (flow) through the middle cerebral artery using laser Doppler flowmetry. Functional outcomes, including forced motor movement rotor rod, were assessed in the 3.12, 6.25, and 12.5 µg/µL groups. Histological analysis was performed using cresyl violet for infarct volume, and glial fibrillary activating protein (GFAP) and NeuN immunohistochemistry for astrocyte activation and mature neuron survival, respectively. RESULTS: Overall, we found that acute post-stroke IA GTN had little effect on vessel dilatation after 15 min. Functional analysis showed a significant difference between GTN (3.12 and 6.25 µg/µL) and control at post-stroke day 1. Histological measures showed a significant reduction in infarct volume and GFAP immunoreactivity and a significant increase in NeuN. CONCLUSIONS: These results demonstrate that acute IA GTN is neuroprotective in experimental ischemic stroke and warrants further study as a potentially new stroke therapy.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infusões Intra-Arteriais , Nitroglicerina/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Vasodilatadores/administração & dosagem , Animais , Isquemia Encefálica/sangue , Infusões Intra-Arteriais/métodos , Fluxometria por Laser-Doppler/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/sangue , Resultado do Tratamento
14.
J Cereb Blood Flow Metab ; 36(4): 721-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661189

RESUMO

While clinical trials have now solidified the role of thrombectomy in emergent large vessel occlusive stroke, additional therapies are needed to optimize patient outcome. Using our previously described experimental ischemic stroke model for evaluating adjunctive intra-arterial drug therapy after vessel recanalization, we studied the potential neuroprotective effects of verapamil. A calcium channel blocker, verapamil is often infused intra-arterially by neurointerventionalists to treat cerebral vasospasm. Such a direct route of administration allows for both focused targeting of stroke-impacted brain tissue and minimizes potential systemic side effects. Intra-arterial administration of verapamil at a flow rate of 2.5 µl/min and injection volume of 10 µl immediately after middle cerebral artery recanalization in C57/Bl6 mice was shown to be profoundly neuroprotective as compared to intra-arterial vehicle-treated stroke controls. Specifically, we noted a significant (P ≤ 0.05) decrease in infarct volume, astrogliosis, and cellular apoptosis as well as a significant increase in neuronal survival and functional outcome over seven days. Furthermore, intra-arterial administration of verapamil was well tolerated with no hemorrhage, systemic side effects, or increased mortality. Thus, verapamil administered intra-arterially immediately following recanalization in experimental ischemic stroke is both safe and neuroprotective and merits further study as a potential therapeutic adjunct to thrombectomy.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Verapamil/uso terapêutico , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/psicologia , Sobrevivência Celular/efeitos dos fármacos , Infarto Cerebral/patologia , Gliose/prevenção & controle , Injeções Intra-Arteriais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Acidente Vascular Cerebral/psicologia , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA