Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Immunol ; 14: 1192604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287962

RESUMO

Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8ß+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8ß+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.


Assuntos
Coinfecção , Influenza Humana , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Humanos , Vírus da Influenza A Subtipo H3N2 , Imunidade
2.
NPJ Vaccines ; 8(1): 19, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792640

RESUMO

There is an urgent need for influenza vaccines providing broader protection that may decrease the need for annual immunization of the human population. We investigated the efficacy of heterologous prime boost immunization with chimpanzee adenovirus (ChAdOx2) and modified vaccinia Ankara (MVA) vectored vaccines, expressing conserved influenza virus nucleoprotein (NP), matrix protein 1 (M1) and neuraminidase (NA) in H1N1pdm09 pre-exposed pigs. We compared the efficacy of intra-nasal, aerosol and intra-muscular vaccine delivery against H3N2 influenza challenge. Aerosol prime boost immunization induced strong local lung T cell and antibody responses and abrogated viral shedding and lung pathology following H3N2 challenge. In contrast, intramuscular immunization induced powerful systemic responses and weak local lung responses but also abolished lung pathology and reduced viral shedding. These results provide valuable insights into the development of a broadly protective influenza vaccine in a highly relevant large animal model and will inform future vaccine and clinical trial design.

3.
Front Immunol ; 12: 758368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858411

RESUMO

The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.


Assuntos
Coinfecção/veterinária , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Coinfecção/imunologia , Coinfecção/virologia , Citocinas/biossíntese , Citocinas/genética , Conjuntos de Dados como Assunto , Cães , Feminino , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Vacinação/veterinária , Eficácia de Vacinas , Vacinas Atenuadas/imunologia , Carga Viral , Viremia/prevenção & controle , Viremia/virologia
4.
Front Immunol ; 12: 763912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804053

RESUMO

There is a critical need to develop superior influenza vaccines that provide broader protection. Influenza vaccines are traditionally tested in naive animals, although humans are exposed to influenza in the first years of their lives, but the impact of prior influenza exposure on vaccine immune responses has not been well studied. Pigs are an important natural host for influenza, are a source of pandemic viruses, and are an excellent model for human influenza. Here, we investigated the immunogenicity of the ChAdOx2 viral vectored vaccine, expressing influenza nucleoprotein, matrix protein 1, and neuraminidase in H1N1pdm09 pre-exposed pigs. We evaluated the importance of the route of administration by comparing intranasal, aerosol, and intramuscular immunizations. Aerosol delivery boosted the local lung T-cell and antibody responses, while intramuscular immunization boosted peripheral blood immunity. These results will inform how best to deliver vaccines in order to harness optimal protective immunity.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Proteínas da Matriz Viral/imunologia , Adenoviridae/genética , Aerossóis , Animais , Citocinas/biossíntese , Vacinas contra Influenza/administração & dosagem , Neuraminidase/imunologia , Proteínas do Nucleocapsídeo/imunologia , Suínos , Vacinação , Eliminação de Partículas Virais
6.
PLoS Pathog ; 17(3): e1009330, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662023

RESUMO

Pigs are natural hosts for the same subtypes of influenza A viruses as humans and integrally involved in virus evolution with frequent interspecies transmissions in both directions. The emergence of the 2009 pandemic H1N1 virus illustrates the importance of pigs in evolution of zoonotic strains. Here we generated pig influenza-specific monoclonal antibodies (mAbs) from H1N1pdm09 infected pigs. The mAbs recognized the same two major immunodominant haemagglutinin (HA) epitopes targeted by humans, one of which is not recognized by post-infection ferret antisera that are commonly used to monitor virus evolution. Neutralizing activity of the pig mAbs was comparable to that of potent human anti-HA mAbs. Further, prophylactic administration of a selected porcine mAb to pigs abolished lung viral load and greatly reduced lung pathology but did not eliminate nasal shedding of virus after H1N1pdm09 challenge. Hence mAbs from pigs, which target HA can significantly reduce disease severity. These results, together with the comparable sizes of pigs and humans, indicate that the pig is a valuable model for understanding how best to apply mAbs as therapy in humans and for monitoring antigenic drift of influenza viruses in humans, thereby providing information highly relevant to making influenza vaccine recommendations.


Assuntos
Anticorpos Antivirais/farmacologia , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Hemaglutininas/imunologia , Hemaglutininas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA