Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Science ; 380(6652): 1349-1356, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384702

RESUMO

Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.


Assuntos
Doença de Chagas , Inibidores da Topoisomerase II , Triazóis , Trypanosoma , Tripanossomíase Africana , Animais , Humanos , Camundongos , Doença de Chagas/tratamento farmacológico , Microscopia Crioeletrônica , DNA Topoisomerases Tipo II/metabolismo , Trypanosoma/efeitos dos fármacos , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Triazóis/química , Triazóis/farmacologia , Triazóis/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos
3.
Trends Parasitol ; 39(4): 260-271, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803572

RESUMO

While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.


Assuntos
Malária , Doenças Parasitárias , Humanos , Descoberta de Drogas , Doenças Parasitárias/tratamento farmacológico , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Malária/tratamento farmacológico , Tecnologia
4.
J Med Chem ; 64(13): 9444-9457, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34138573

RESUMO

Screening of a library of small polar molecules against Mycobacterium tuberculosis (Mtb) led to the identification of a potent benzoheterocyclic oxime carbamate hit series. This series was subjected to medicinal chemistry progression underpinned by structure-activity relationship studies toward identifying a compound for proof-of-concept studies and defining a lead optimization strategy. Carbamate and free oxime frontrunner compounds with good stability in liver microsomes and no hERG channel inhibition liability were identified and evaluated in vivo for pharmacokinetic properties. Mtb-mediated permeation and metabolism studies revealed that the carbamates were acting as prodrugs. Toward mechanism of action elucidation, selected compounds were tested in biology triage assays to assess their activity against known promiscuous targets. Taken together, these data suggest a novel yet unknown mode of action for these antitubercular hits.


Assuntos
Antituberculosos/farmacologia , Carbamatos/farmacologia , Compostos Heterocíclicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oximas/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Oximas/química , Oximas/metabolismo , Relação Estrutura-Atividade
5.
ACS Infect Dis ; 7(5): 959-968, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33822577

RESUMO

Cryptosporidiosis is a leading cause of moderate-to-severe diarrhea in low- and middle-income countries, responsible for high mortality in children younger than two years of age, and it is also strongly associated with childhood malnutrition and growth stunting. There is no vaccine for cryptosporidiosis and existing therapeutic options are suboptimal to prevent morbidity and mortality in young children. Recently, novel therapeutic agents have been discovered through high-throughput phenotypic and target-based screening strategies, repurposing malaria hits, etc., and these agents have a promising preclinical in vitro and in vivo anti-Cryptosporidium efficacy. One key step in bringing safe and effective new therapies to young vulnerable children is the establishment of some prospect of direct benefit before initiating pediatric clinical studies. A Cryptosporidium controlled human infection model (CHIM) in healthy adult volunteers can be a robust clinical proof of concept model for evaluating novel therapeutics. CHIM could potentially accelerate the development path to pediatric studies by establishing the safety of a proposed pediatric dosing regimen and documenting preliminary efficacy in adults. We present, here, perspectives regarding the opportunities and perceived challenges with the Cryptosporidium human challenge model.


Assuntos
Criptosporidiose , Cryptosporidium , Malária , Adulto , Antiparasitários/farmacologia , Criança , Pré-Escolar , Criptosporidiose/tratamento farmacológico , Diarreia/tratamento farmacológico , Humanos
6.
PLoS Negl Trop Dis ; 15(3): e0009057, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705395

RESUMO

Cryptosporidium is a widely distributed enteric parasite that has an increasingly appreciated pathogenic role, particularly in pediatric diarrhea. While cryptosporidiosis has likely affected humanity for millennia, its recent "emergence" is largely the result of discoveries made through major epidemiologic studies in the past decade. There is no vaccine, and the only approved medicine, nitazoxanide, has been shown to have efficacy limitations in several patient groups known to be at elevated risk of disease. In order to help frontline health workers, policymakers, and other stakeholders translate our current understanding of cryptosporidiosis into actionable guidance to address the disease, we sought to assess salient issues relating to clinical management of cryptosporidiosis drawing from a review of the literature and our own field-based practice. This exercise is meant to help inform health system strategies for improving access to current treatments, to highlight recent achievements and outstanding knowledge and clinical practice gaps, and to help guide research activities for new anti-Cryptosporidium therapies.


Assuntos
Antiparasitários/uso terapêutico , Criptosporidiose/tratamento farmacológico , Criptosporidiose/epidemiologia , Cryptosporidium/efeitos dos fármacos , Nitrocompostos/uso terapêutico , Tiazóis/uso terapêutico , Pré-Escolar , Cryptosporidium/imunologia , Diarreia/parasitologia , Surtos de Doenças , Hidratação , Humanos , Hospedeiro Imunocomprometido/imunologia , Lactente , Recém-Nascido
7.
ACS Infect Dis ; 6(1): 3-13, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31808676

RESUMO

In May 2019, the Wellcome Centre for Anti-Infectives Research (WCAIR) at the University of Dundee, UK, held an international conference with the aim of discussing some key questions around discovering new medicines for infectious diseases and a particular focus on diseases affecting Low and Middle Income Countries. There is an urgent need for new drugs to treat most infectious diseases. We were keen to see if there were lessons that we could learn across different disease areas and between the preclinical and clinical phases with the aim of exploring how we can improve and speed up the drug discovery, translational, and clinical development processes. We started with an introductory session on the current situation and then worked backward from clinical development to combination therapy, pharmacokinetic/pharmacodynamic (PK/PD) studies, drug discovery pathways, and new starting points and targets. This Viewpoint aims to capture some of the learnings.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/tratamento farmacológico , Congressos como Assunto , Terapia Combinada , Doenças Transmissíveis/epidemiologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Infecções por HIV/tratamento farmacológico , Humanos , Pobreza , Reino Unido
8.
ACS Infect Dis ; 6(1): 14-24, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31612701

RESUMO

Diarrhea has long been recognized as an important cause of mortality during childhood. In parallel with ensuring access to proven care practices is the imperative to apply modern advances in medicine, science, and technology to accelerate progress against diarrheal disease, particularly in developing countries where the burden of avoidable harm is the greatest. In order to highlight achievements and identify outstanding areas of need, we reviewed the landscape of recent innovations that have significance for the study and clinical management of pediatric diarrhea in low resource settings.


Assuntos
Países em Desenvolvimento/estatística & dados numéricos , Diarreia/epidemiologia , Diarreia/prevenção & controle , Recursos em Saúde/provisão & distribuição , Infecções Bacterianas/prevenção & controle , Criança , Controle de Doenças Transmissíveis , Países em Desenvolvimento/economia , Diarreia/mortalidade , Recursos em Saúde/estatística & dados numéricos , Humanos , Doenças Parasitárias/prevenção & controle , Saúde Pública/métodos , Vacinas , Viroses/prevenção & controle
9.
ACS Infect Dis ; 4(4): 635-645, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29341586

RESUMO

Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.


Assuntos
Antiprotozoários/isolamento & purificação , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/parasitologia , Antiprotozoários/farmacologia , Linhagem Celular , Humanos
10.
Nature ; 546(7658): 376-380, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562588

RESUMO

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/enzimologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Animais Recém-Nascidos , Bovinos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hospedeiro Imunocomprometido , Interferon gama/deficiência , Interferon gama/genética , Masculino , Camundongos , Camundongos Knockout , Pirazóis/química , Pirazóis/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratos , Ratos Wistar
11.
ACS Infect Dis ; 2(8): 530-7, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626293

RESUMO

The apicomplexan parasite Cryptosporidium is the second most important diarrheal pathogen causing life-threatening diarrhea in children, which is also associated with long-term growth faltering and cognitive deficiency. Cryptosporidiosis is a parasitic disease of public health concern caused by Cryptosporidium parvum and Cryptosporidium hominis. Currently, nitazoxanide is the only approved treatment for cryptosporidium infections. Unfortunately, it has limited efficacy in the most vulnerable patients, thus there is an urgent need for a safe and efficacious cryptosporidiosis drug. In this work, we present our current perspectives on the target product profile for novel cryptosporidiosis therapies and the perceived challenges and possible mitigation plans at different stages in the cryptosporidiosis drug discovery process.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/parasitologia , Cryptosporidium/efeitos dos fármacos , Animais , Criptosporidiose/diagnóstico , Criptosporidiose/tratamento farmacológico , Cryptosporidium/genética , Cryptosporidium/crescimento & desenvolvimento , Cryptosporidium/fisiologia , Descoberta de Drogas , Humanos
12.
Eur J Med Chem ; 106: 144-56, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26544629

RESUMO

Pyridone 1 was identified from a high-throughput cell-based phenotypic screen against Mycobacterium tuberculosis (Mtb) including multi-drug resistant tuberculosis (MDR-TB) as a novel anti-TB agent and subsequently optimized series using cell-based Mtb assay. Preliminary structure activity relationship on the isobutyl group with higher cycloalkyl groups at 6-position of pyridone ring has enabled us to significant improvement of potency against Mtb. The lead compound 30j, a dimethylcyclohexyl group on the 6-position of the pyridone, displayed desirable in vitro potency against both drug sensitive and multi-drug resistant TB clinical isolates. In addition, 30j displayed favorable oral pharmacokinetic properties and demonstrated in vivo efficacy in mouse model. These results emphasize the importance of 4-hydroxy-2-pyridones as a new chemotype and further optimization of properties to treat MDR-TB.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piridonas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Piridonas/química , Piridonas/metabolismo , Ratos , Relação Estrutura-Atividade
13.
J Med Chem ; 58(23): 9371-81, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26551248

RESUMO

High-throughput screening of a library of small polar molecules against Mycobacterium tuberculosis led to the identification of a phthalimide-containing ester hit compound (1), which was optimized for metabolic stability by replacing the ester moiety with a methyl oxadiazole bioisostere. A route utilizing polymer-supported reagents was designed and executed to explore structure-activity relationships with respect to the N-benzyl substituent, leading to compounds with nanomolar activity. The frontrunner compound (5h) from these studies was well tolerated in mice. A M. tuberculosis cytochrome bd oxidase deletion mutant (ΔcydKO) was hyper-susceptible to compounds from this series, and a strain carrying a single point mutation in qcrB, the gene encoding a subunit of the menaquinol cytochrome c oxidoreductase, was resistant to compounds in this series. In combination, these observations indicate that this novel class of antimycobacterial compounds inhibits the cytochrome bc1 complex, a validated drug target in M. tuberculosis.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Pirróis/química , Pirróis/farmacologia , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacocinética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Terapia de Alvo Molecular , Piridonas/química , Piridonas/metabolismo , Piridonas/farmacocinética , Piridonas/farmacologia , Pirróis/metabolismo , Pirróis/farmacocinética , Ratos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
14.
Sci Transl Med ; 7(269): 269ra3, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25568071

RESUMO

New chemotherapeutic agents are urgently required to combat the global spread of multidrug-resistant tuberculosis (MDR-TB). The mycobacterial enoyl reductase InhA is one of the few clinically validated targets in tuberculosis drug discovery. We report the identification of a new class of direct InhA inhibitors, the 4-hydroxy-2-pyridones, using phenotypic high-throughput whole-cell screening. This class of orally active compounds showed potent bactericidal activity against common isoniazid-resistant TB clinical isolates. Biophysical studies revealed that 4-hydroxy-2-pyridones bound specifically to InhA in an NADH (reduced form of nicotinamide adenine dinucleotide)-dependent manner and blocked the enoyl substrate-binding pocket. The lead compound NITD-916 directly blocked InhA in a dose-dependent manner and showed in vivo efficacy in acute and established mouse models of Mycobacterium tuberculosis infection. Collectively, our structural and biochemical data open up new avenues for rational structure-guided optimization of the 4-hydroxy-2-pyridone class of compounds for the treatment of MDR-TB.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Animais , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Fenômenos Biofísicos/efeitos dos fármacos , Cristalografia por Raios X , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/química , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Oxirredutases/metabolismo , Piridinas/química , Piridinas/farmacologia , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
15.
J Antimicrob Chemother ; 70(3): 857-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25587994

RESUMO

OBJECTIVES: The discovery and development of TB drugs has met limited success, with two new drugs approved over the last 40 years. Part of the difficulty resides in the lack of well-established in vitro or in vivo targets of potency and physicochemical and pharmacokinetic parameters. In an attempt to benchmark and compare such properties for anti-TB agents, we have experimentally determined and compiled these parameters for 36 anti-TB compounds, using standardized and centralized assays, thus ensuring direct comparability across drugs and drug classes. METHODS: Potency parameters included growth inhibition, cidal activity against growing and non-growing bacteria and activity against intracellular mycobacteria. Pharmacokinetic parameters included basic physicochemical properties, solubility, permeability and metabolic stability. We then attempted to establish correlations between physicochemical, in vitro and in vivo pharmacokinetic and pharmacodynamic indices to tentatively inform future drug discovery efforts. RESULTS: Two-thirds of the compounds tested showed bactericidal and intramacrophage activity. Most compounds exhibited favourable solubility, permeability and metabolic stability in standard in vitro pharmacokinetic assays. An analysis of human pharmacokinetic parameters revealed associations between lipophilicity and volume of distribution, clearance, plasma protein binding and oral bioavailability. Not surprisingly, most compounds with favourable pharmacokinetic properties complied with Lipinski's rule of five. CONCLUSIONS: However, most attempts to detect in vitro-in vivo correlations were unsuccessful, emphasizing the challenges of anti-TB drug discovery. The objective of this work is to provide a reference dataset for the TB drug discovery community with a focus on comparative in vitro potency and pharmacokinetics.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/química , Linhagem Celular , Fenômenos Químicos , Estabilidade de Medicamentos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Permeabilidade , Solubilidade
16.
Bioorg Med Chem ; 23(16): 5087-97, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25577708

RESUMO

Tuberculosis poses a major global health problem and multi-drug resistant strains are increasingly prevalent. Hence there is an urgent need to discover new TB drugs. Cell based phenotypic screening represents a powerful approach to identify anti-mycobacterial compounds and elucidate novel targets. Three high throughput phenotypic screens were performed at NITD against mycobacterium. Hits were identified and chemical series selected for optimisation. This produced compounds with good in vitro anti-mycobacterial activity and pharmacokinetic properties. Some compounds displayed oral activity in mouse efficacy models of TB. Herein, we review the TB discovery efforts at NITD and share experiences in optimisation of phenotypic hits, describing challenges encountered and lessons learned. We also offer perspectives to facilitate future selection and advancement of phenotypic hits.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Animais , Antituberculosos/química , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo
17.
PLoS One ; 9(8): e105222, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25141257

RESUMO

PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 in vivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both in vivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with in vivo efficacy. Our findings show that the in vivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with in vivo efficacy (rs = 0.88) followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs.


Assuntos
Nitroimidazóis/farmacologia , Nitroimidazóis/farmacocinética , Tuberculose/tratamento farmacológico , Animais , Células CACO-2 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Estudos Retrospectivos
18.
Sci Transl Med ; 5(214): 214ra168, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24307692

RESUMO

New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.


Assuntos
Antituberculosos/farmacologia , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Administração Oral , Animais , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Antituberculosos/toxicidade , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Disponibilidade Biológica , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Indóis/administração & dosagem , Indóis/farmacocinética , Indóis/toxicidade , Injeções Intravenosas , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Ratos , Ratos Wistar , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
19.
J Med Chem ; 56(21): 8849-59, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24090347

RESUMO

Indole-2-carboxamides have been identified as a promising class of antituberculosis agents from phenotypic screening against mycobacteria. One of the hits, indole-2-carboxamide analog (1), had low micromolar potency against Mycobacterium tuberculosis (Mtb), high mouse liver microsomal clearance, and low aqueous solubility. Structure-activity relationship studies revealed that attaching alkyl groups to the cyclohexyl ring significantly improved Mtb activity but reduced solubility. Furthermore, chloro, fluoro, or cyano substitutions on the 4- and 6-positions of the indole ring as well as methyl substitution on the cyclohexyl ring significantly improved metabolic stability. 39 and 41, the lead candidates, displayed improved in vitro activity compared to most of the current standard TB drugs. The low aqueous solubility could not be mitigated because of the positive correlation of lipophilicity with Mtb potency. However, both compounds displayed favorable oral pharmacokinetic properties in rodents and demonstrated in vivo efficacy. Thus, indole-2-carboxamides represent a promising new class of antituberculosis agents.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Solubilidade , Relação Estrutura-Atividade
20.
Mol Microbiol ; 87(4): 744-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23240649

RESUMO

Mycobacterium tuberculosis (Mtb) is an aerobic bacterium that persists intracellularly in host macrophages and has evolved diverse mechanisms to combat and survive oxidative stress. Here we show a novel F(420) -dependent anti-oxidant mechanism that protects Mtb against oxidative stress. Inactivation of the fbiC gene in Mtb results in a cofactor F(420) -deficient mutant that is hypersensitive to oxidative stress and exhibits a reduction in NADH/NAD(+) ratios upon treatment with menadione. In agreement with the recent hypothesis on oxidative stress being an important component of the pathway resulting in cell death by bactericidal agents, F(420) (-) mutants are hypersensitive to mycobactericidal agents such as isoniazid, moxifloxacin and clofazimine that elevate oxidative stress. The Mtb deazaflavin-dependent nitroreductase (Ddn) and its two homologues Rv1261c and Rv1558 encode for an F(420) H(2) -dependent quinone reductase (Fqr) function leading to dihydroquinones. We hypothesize that Fqr proteins catalyse an F(420) H(2) -specific obligate two-electron reduction of endogenous quinones, thereby competing with the one-electron reduction pathway and preventing the formation of harmful cytotoxic semiquinones, thus protecting mycobacteria against oxidative stress and bactericidal agents. These findings open up an avenue for the inhibition of the F(420) biosynthesis pathway or Fqr-class proteins as a mechanism to potentiate the action of bactericidal agents.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Mycobacterium tuberculosis/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Antioxidantes/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/química , NAD(P)H Desidrogenase (Quinona)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA