Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Planárias , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regeneração , Transativadores/metabolismo , Transativadores/genética
2.
Nat Commun ; 12(1): 6706, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795249

RESUMO

Hox genes are highly conserved transcription factors renowned for their roles in the segmental patterning of the embryonic anterior-posterior (A/P) axis. We report functions for Hox genes in A/P tissue segmentation and transverse fission behavior underlying asexual reproduction in adult planarian flatworms, Schmidtea mediterranea. Silencing of each of the Hox family members identifies 5 Hox genes required for asexual reproduction. Among these, silencing of hox3 genes results in supernumerary fission segments, while silencing of post2b eliminates segmentation altogether. The opposing roles of hox3 and post2b in segmentation are paralleled in their respective regulation of fission behavior. Silencing of hox3 increases the frequency of fission behavior initiation while silencing of post2b eliminates fission behavior entirely. Furthermore, we identify a network of downstream effector genes mediating Hox gene functions, providing insight into their respective mechanisms of action. In particular, we resolve roles for post2b and effector genes in the functions of the marginal adhesive organ in fission behavior regulation. Collectively, our study establishes adult stage roles for Hox genes in the regulation of tissue segmentation and behavior associated with asexual reproduction.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos/genética , Genes Homeobox/genética , Planárias/genética , Animais , Proteínas de Homeodomínio/genética , Hibridização in Situ Fluorescente , Microscopia Confocal , Microscopia Eletrônica de Varredura , Planárias/crescimento & desenvolvimento , Planárias/ultraestrutura , Interferência de RNA , RNA-Seq/métodos , Reprodução Assexuada/genética , Fatores de Transcrição/genética
3.
Nat Cell Biol ; 23(9): 939-952, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475533

RESUMO

Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine. TRACS were independent of stem cell division with distinct spatiotemporal distributions, and RNAi depletion of TRACS-enriched genes produced regeneration defects. Muscle expression of notum, follistatin, evi/wls, glypican-1 and junctophilin-1 was required for tissue polarity. Epidermal expression of agat-1/2/3, cyp3142a1, zfhx3 and atp1a1 was important for stem cell proliferation. Finally, expression of spectrinß and atp12a in intestinal basal cells, and lrrk2, cathepsinB, myosin1e, polybromo-1 and talin-1 in intestinal enterocytes regulated stem cell proliferation and tissue remodelling, respectively. Our results identify cell types and molecules that are important for regeneration, indicating that regenerative ability can emerge from coordinated transcriptional plasticity across all three germ layers.


Assuntos
Células Epidérmicas/citologia , Regeneração/fisiologia , Células-Tronco/metabolismo , Animais , Mediterranea/metabolismo , Interferência de RNA/fisiologia , Transcriptoma/fisiologia
4.
Mol Cell Proteomics ; 20: 100137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34416386

RESUMO

The extracellular matrix (ECM) is a three-dimensional network of macromolecules that provides a microenvironment capable of supporting and regulating cell functions. However, only a few research organisms are available for the systematic dissection of the composition and functions of the ECM, particularly during regeneration. We utilized the free-living flatworm Schmidtea mediterranea to develop an integrative approach consisting of decellularization, proteomics, and RNAi to characterize and investigate ECM functions during tissue homeostasis and regeneration. ECM-enriched samples were isolated from planarians, and their proteomes were characterized by LC-MS/MS. The functions of identified ECM components were interrogated using RNA interference. Using this approach, we found that heparan sulfate proteoglycan is essential for tissue regeneration. Our strategy provides an experimental approach for identifying both known and novel ECM components involved in regeneration.


Assuntos
Matriz Extracelular Descelularizada , Planárias , Regeneração , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteoglicanas de Heparan Sulfato , Homeostase , Planárias/genética , Planárias/metabolismo , Planárias/fisiologia , Proteoma , Interferência de RNA
5.
PLoS Genet ; 12(4): e1005956, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27070429

RESUMO

To understand the molecular processes underlying aging, we screened modENCODE ChIP-seq data to identify transcription factors that bind to age-regulated genes in C. elegans. The most significant hit was the GATA transcription factor encoded by elt-2, which is responsible for inducing expression of intestinal genes during embryogenesis. Expression of ELT-2 decreases during aging, beginning in middle age. We identified genes regulated by ELT-2 in the intestine during embryogenesis, and then showed that these developmental genes markedly decrease in expression as worms grow old. Overexpression of elt-2 extends lifespan and slows the rate of gene expression changes that occur during normal aging. Thus, our results identify the developmental regulator ELT-2 as a major driver of normal aging in C. elegans.


Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Fatores de Transcrição GATA/genética , Animais , Caenorhabditis elegans/genética , Regulação da Expressão Gênica/genética , Intestinos/crescimento & desenvolvimento , Mutação , Transcrição Gênica
6.
PLoS Genet ; 5(6): e1000502, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19503594

RESUMO

High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism.


Assuntos
Elementos de DNA Transponíveis/genética , Polimorfismo Genético/genética , Saccharomyces cerevisiae/genética , Hibridização Genômica Comparativa , DNA Fúngico , Dosagem de Genes , Genoma Fúngico , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA