Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Med ; 30(5): 1300-1308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641750

RESUMO

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.


Assuntos
Autoanticorpos , Esclerose Múltipla , Proteínas de Neurofilamentos , Humanos , Esclerose Múltipla/imunologia , Esclerose Múltipla/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/imunologia , Biomarcadores/sangue , Estudos de Coortes , Feminino , Masculino , Adulto , Pessoa de Meia-Idade
2.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632288

RESUMO

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Assuntos
Proteínas do Tecido Nervoso , Degeneração Paraneoplásica Cerebelar , Humanos , Estudos Retrospectivos , Proteínas do Tecido Nervoso/metabolismo , Biomarcadores/líquido cefalorraquidiano , Autoanticorpos/líquido cefalorraquidiano , Imunoglobulina G
3.
medRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37205595

RESUMO

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.

4.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300623

RESUMO

Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.


Assuntos
Doenças Autoimunes , Bacteriófagos , COVID-19 , Humanos , Autoanticorpos , Autoantígenos/metabolismo , Autoimunidade , Bacteriófagos/metabolismo , Proteínas de Homeodomínio , Imunoprecipitação , Proteoma
5.
Ann Neurol ; 92(2): 279-291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466441

RESUMO

OBJECTIVE: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD. METHODS: Immunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively. RESULTS: Autoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed. INTERPRETATION: Our results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças do Sistema Endócrino , Doenças Hipotalâmicas , Síndromes Paraneoplásicas do Sistema Nervoso , Autoanticorpos , Criança , Humanos , Doenças Hipotalâmicas/genética , Hipoventilação/genética , Ligantes , Síndromes Paraneoplásicas do Sistema Nervoso/diagnóstico , Síndrome
6.
bioRxiv ; 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35350199

RESUMO

Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.

7.
Clin Infect Dis ; 75(1): e303-e306, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35037050

RESUMO

While SARS-CoV-2 vaccines prevent severe disease effectively, postvaccination "breakthrough" COVID-19 infections and transmission among vaccinated individuals remain ongoing concerns. We present an in-depth characterization of transmission and immunity among vaccinated individuals in a household, revealing complex dynamics and unappreciated comorbidities, including autoimmunity to type 1 interferon in the presumptive index case.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade
8.
J Infect Dis ; 225(11): 1909-1914, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979030

RESUMO

The wide spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of immune responses to different spike protein versions. Here, we compare neutralization of variants of concern, including B.1.617.2 (delta) and B.1.1.529 (omicron), in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure, and exposure to multiple spike variants increases breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
9.
Clin Infect Dis ; 74(1): 32-39, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788923

RESUMO

BACKGROUND: Sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during 22 November to 1 December, 2020, and 10-29 January 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12 124 tests were performed yielding 1099 positives. From these, 928 high-quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.4% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to the "California" or "West Coast" variants (B.1.427 and B.1.429) were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.36 vs 0.29, risk ratio [RR] = 1.28; 95% confidence interval [CI]: 1.00-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.3%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants. Summary: We observed a growing prevalence and modestly elevated attack rate for "West Coast" severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Incidência , São Francisco/epidemiologia
10.
Eur J Neurol ; 28(12): 4261-4266, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561925

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to identify the long-term radiological changes, autoantibody specificities, and clinical course in a patient with kelch-like protein 11 (KLHL11)-associated paraneoplastic neurological syndrome (PNS). METHODS: Serial brain magnetic resonance images were retrospectively assessed. To test for KLHL11 autoantibodies, longitudinal cerebrospinal fluid (CSF) and serum samples were screened by Phage-display ImmunoPrecipitation and Sequencing (PhIP-Seq). Immunohistochemistry was also performed to assess for the presence of KLHL11 in the patient's seminoma tissue. RESULTS: A 42-year-old man presented with progressive ataxia and sensorineural hearing loss. Metastatic seminoma was detected 11 months after the onset of the neurological symptoms. Although immunotherapy was partially effective, his cerebellar ataxia gradually worsened over the next 8 years. Brain magnetic resonance imaging revealed progressive brainstem and cerebellar atrophy with a "hot-cross-bun sign", and low-signal intensity on susceptibility-weighted imaging (SWI) in the substantia nigra, red nucleus and dentate nuclei. PhIP-Seq enriched for KLHL11-derived peptides in all samples. Immunohistochemical staining of mouse brain with the patient CSF showed co-localization with a KLHL11 commercial antibody in the medulla and dentate nucleus. Immunohistochemical analysis of seminoma tissue showed anti-KLHL11 antibody-positive particles in cytoplasm. CONCLUSIONS: This study suggests that KLHL11-PNS should be included in the differential diagnosis for patients with brainstem and cerebellar atrophy and signal changes not only on T2-FLAIR but also on SWI, which might otherwise be interpreted as secondary to a neurodegenerative disease such as multiple system atrophy.


Assuntos
Atrofia de Múltiplos Sistemas , Síndromes Paraneoplásicas do Sistema Nervoso , Animais , Autoanticorpos , Humanos , Imageamento por Ressonância Magnética , Camundongos , Síndromes Paraneoplásicas do Sistema Nervoso/diagnóstico por imagem , Estudos Retrospectivos
11.
Sci Transl Med ; 13(612): eabh2624, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34429372

RESUMO

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN­specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non­COVID-19 controls revealed a lack of type I IFN­stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN­specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN­specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , Autoanticorpos/imunologia , COVID-19/imunologia , Humanos , Interferon Tipo I/imunologia
12.
bioRxiv ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33758859

RESUMO

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.

13.
medRxiv ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33688689

RESUMO

BACKGROUND: Sequencing of the SARS-CoV-2 viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during November 22-December 2, 2020 and January 10-29, 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12,124 tests were performed yielding 1,099 positives. From these, 811 high quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.9% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to "West Coast" variants were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.357 vs 0.294, RR=1.29; 95% CI:1.01-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.1%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants; however, additional laboratory and epidemiological studies are required to better understand differences between these variants. SUMMARY: We observed a growing prevalence and elevated attack rate for "West Coast" SARS-CoV-2 variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.

14.
medRxiv ; 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34981075

RESUMO

The wide spectrum of SARS-CoV-2 variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of the immune response to different spike protein versions. Here, we compare the neutralization of variants of concern, including B.1.617.2 (Delta) and B.1.1.529 (Omicron) in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure. We also observe that exposure to multiple spike variants increases the breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies. SUMMARY: This study characterizes neutralization of eight different SARS-CoV-2 variants, including Delta and Omicron, with respect to nine different prior exposures, including vaccination, booster, and infections with Delta, Epsilon, and others. Different exposures were found to confer substantially differing neutralization specificity.

15.
Nat Commun ; 11(1): 5854, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203890

RESUMO

SARS-CoV-2 infection is characterized by peak viral load in the upper airway prior to or at the time of symptom onset, an unusual feature that has enabled widespread transmission of the virus and precipitated a global pandemic. How SARS-CoV-2 is able to achieve high titer in the absence of symptoms remains unclear. Here, we examine the upper airway host transcriptional response in patients with COVID-19 (n = 93), other viral (n = 41) or non-viral (n = 100) acute respiratory illnesses (ARIs). Compared with other viral ARIs, COVID-19 is characterized by a pronounced interferon response but attenuated activation of other innate immune pathways, including toll-like receptor, interleukin and chemokine signaling. The IL-1 and NLRP3 inflammasome pathways are markedly less responsive to SARS-CoV-2, commensurate with a signature of diminished neutrophil and macrophage recruitment. This pattern resembles previously described distinctions between symptomatic and asymptomatic viral infections and may partly explain the propensity for pre-symptomatic transmission in COVID-19. We further use machine learning to build 27-, 10- and 3-gene classifiers that differentiate COVID-19 from other ARIs with AUROCs of 0.981, 0.954 and 0.885, respectively. Classifier performance is stable across a wide range of viral load, suggesting utility in mitigating false positive or false negative results of direct SARS-CoV-2 tests.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Inata/genética , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Diagnóstico Diferencial , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Nasofaringe/imunologia , Nasofaringe/virologia , Pandemias , Pneumonia Viral/diagnóstico , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Carga Viral
17.
Cell Rep Med ; 1(7): 100123, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32995758

RESUMO

Comprehensive understanding of the serological response to SARS-CoV-2 infection is important for both pathophysiologic insight and diagnostic development. Here, we generate a pan-human coronavirus programmable phage display assay to perform proteome-wide profiling of coronavirus antigens enriched by 98 COVID-19 patient sera. Next, we use ReScan, a method to efficiently sequester phage expressing the most immunogenic peptides and print them onto paper-based microarrays using acoustic liquid handling, which isolates and identifies nine candidate antigens, eight of which are derived from the two proteins used for SARS-CoV-2 serologic assays: spike and nucleocapsid proteins. After deployment in a high-throughput assay amenable to clinical lab settings, these antigens show improved specificity over a whole protein panel. This proof-of-concept study demonstrates that ReScan will have broad applicability for other emerging infectious diseases or autoimmune diseases that lack a valid biomarker, enabling a seamless pipeline from antigen discovery to diagnostic using one recombinant protein source.


Assuntos
Antígenos Virais/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/sangue , COVID-19/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Análise Serial de Proteínas , Proteoma/imunologia , Reprodutibilidade dos Testes , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Proteínas Virais/imunologia
18.
EClinicalMedicine ; 27: 100518, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32864588

RESUMO

BACKGROUND: Most data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been presented as case series without comparison to patients with other acute respiratory illnesses. METHODS: We examined emergency department patients between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared clinical presentation, diagnostics, treatment, and outcomes. FINDINGS: Among 316 patients, 33 tested positive for SARS-CoV-2; 31 without COVID-19 tested positive for another respiratory virus. Among patients with additional viral testing (27/33), no SARS-CoV-2 co-infections were identified. Compared to those who tested negative, patients with COVID-19 reported longer symptoms duration (median 7d vs. 3d, p < 0.001). Patients with COVID-19 were more often hospitalized (79% vs. 56%, p = 0.014). When hospitalized, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p < 0.001) and more often developed ARDS (23% vs. 3%, p < 0.001). Most comorbidities, medications, symptoms, vital signs, laboratories, treatments, and outcomes did not differ by COVID-19 status. INTERPRETATION: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections. FUNDING: National Center for Advancing Translational Sciences, National Heart Lung Blood Institute, National Institute of Allergy and Infectious Diseases, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative.

19.
medRxiv ; 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32511476

RESUMO

We studied the host transcriptional response to SARS-CoV-2 by performing metagenomic sequencing of upper airway samples in 238 patients with COVID-19, other viral or non-viral acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-19 was characterized by a diminished innate immune response, with reduced expression of genes involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 also exhibited significantly reduced proportions of neutrophils and macrophages, and increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using machine learning, we built 26-, 10- and 3-gene classifiers that differentiated COVID-19 from other acute respiratory illnesses with AUCs of 0.980, 0.950 and 0.871, respectively. Classifier performance was stable at low viral loads, suggesting utility in settings where direct detection of viral nucleic acid may be unsuccessful. Taken together, our results illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 diagnostics based on patient gene expression.

20.
medRxiv ; 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511488

RESUMO

BACKGROUND: Emerging data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have largely been presented as case series. Few studies have compared these clinical features and outcomes of COVID-19 to other acute respiratory illnesses. METHODS: We examined all patients presenting to an emergency department in San Francisco, California between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared demographics, comorbidities, symptoms, vital signs, and laboratory results including viral diagnostics using PCR and mNGS. Among those hospitalized, we determined differences in treatment (antibiotics, antivirals, respiratory support) and outcomes (ICU admission, ICU interventions, acute respiratory distress syndrome, cardiac injury). FINDINGS: In a cohort of 316 patients, 33 (10%) tested positive for SARS-CoV-2; 31 patients, all without COVID-19, tested positive for another respiratory virus (16%). Among patients with additional viral testing, no co-infections with SARS-CoV-2 were identified by PCR or mNGS. Patients with COVID-19 reported longer symptoms duration (median 7 vs. 3 days), and were more likely to report fever (82% vs. 44%), fatigue (85% vs. 50%), and myalgias (61% vs 27%); p<0.001 for all comparisons. Lymphopenia (55% vs 34%, p=0.018) and bilateral opacities on initial chest radiograph (55% vs. 24%, p=0.001) were more common in patients with COVID-19. Patients with COVID-19 were more often hospitalized (79% vs. 56%, p=0.014). Of 186 hospitalized patients, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p<0.001) and were more likely to develop ARDS (23% vs. 3%, p<0.001). Most comorbidities, home medications, signs and symptoms, vital signs, laboratory results, treatment, and outcomes did not differ by COVID-19 status. INTERPRETATION: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections. These findings enhance understanding of the clinical characteristics of COVID-19 in comparison to other acute respiratory illnesses. .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA