Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1517(1): 251-265, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35994210

RESUMO

Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.


Assuntos
Claudinas , Epiderme , Humanos , Claudinas/metabolismo , Claudina-1/metabolismo , Claudina-4/metabolismo , Epiderme/metabolismo , Permeabilidade , Junções Íntimas/metabolismo , Claudina-5/metabolismo
2.
Allergy ; 76(10): 3094-3106, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33844311

RESUMO

BACKGROUND: Expression of the tight junction proteins Cldn1 and 4 is altered in skin diseases such as atopic dermatitis, and Cldn1 deficiency affects skin barrier formation. Impedance spectroscopy (IS) has been proven to allow detection of alterations in the skin barrier but is currently unable to separate effects on viable epidermis (VE) and stratum corneum (SC). METHODS: Effects of siRNA-mediated Cldn1 and 4 knockdown in reconstructed human epidermis (RHE) on VE and SC barrier function were investigated with Ussing chamber-based IS. Barrier components were sequentially altered, employing iron oxide nanoparticles and EGTA, to identify their contribution to the impedance spectrum. Resistance changes due to apically applied hyperosmolar electrolyte were used to identify barrier defects non-invasively. RESULTS: IS of RHE yielded two relaxation frequencies, representing the barrier properties of the SC (~1000 Hz) and VE (~100 Hz). As proof of concept, it was shown that the Cldn1 knockdown-induced resistance drop arises from the impairment of both SC and VE, indicated by a shift of both relaxation frequencies. Hyperosmolar electrolyte penetration allowed non-invasive detection of Cldn1 knockdown via time-dependent frequency shifts. The absence of Cldn4 knockdown-induced changes revealed the weaknesses of transepithelial electrical resistance analysis. CONCLUSION: In conclusion, the present technique allows to separately measure the barrier properties of SC and VE and further evaluate the Cldn1 and 4 knockdown impact on the skin barrier. As the measurement with agarose-embedded electrolyte allowed non-invasive identification of the Cldn1 knockdown, this opens the way to detailed in vivo skin barrier assessment.


Assuntos
Dermatite Atópica , Espectroscopia Dielétrica , Células Epidérmicas , Epiderme , Humanos , Pele , Junções Íntimas
3.
Rev Sci Instrum ; 84(4): 043901, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635203

RESUMO

HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA