Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17938, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095433

RESUMO

This article examines the operational functionality of intelligent transport systems to enhance smart cities by reducing traffic congestion. Given the increasing populations of smart cities, there is a growing demand for public transit systems to address the issue of traffic congestion. Therefore, the suggested system is developed using a few parametric design models, which combine point-to-point protocol and mode control optimization. The multi-objective parametric design for a smart transportation system is conducted using min-max functions to minimize the waiting time period for end users. Furthermore, customers are given the option to utilize a line following mechanism that offers suitable connectivity, along with independent identification and revitalize functions. The predicted model effectively eliminates the delay produced by transportation devices when positioning units are involved, ensuring that individual messages are delivered without any interruptions. In order to evaluate the results of the proposed system model, four different scenarios were examined. A comparison analysis revealed that the suggested method achieves a suitable directional flow for 96% of smart transport units. Additionally, it reduces delays and waiting periods by 2% and 6% respectively, while increasing energy consumption by 29%.

2.
Sci Rep ; 14(1): 12650, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825625

RESUMO

The proliferation of smart conurbations entails an efficient system design for managing all the crowds in public places. Multitude controlling procedures are carried out for controlling compact areas where more number of peoples is present at several groups. Therefore for controlling purpose the proposed method aims to design a pictorial representation using Internet of Things (IoT). The process is carried out by taking images and then organizing it using switching techniques in the presence of square boxes where entire populace is identified on real time experimentations. For processing and controlling the occurrence a separate architecture is designed with analytical equivalences where all data set is stored in cloud platform. Further the incorporation of system model is carried out using Switching Based Algorithm (SBA) which adds more number of columns even for high population cases. In order to verify the effectiveness of proposed model five scenarios are considered with performance evaluation metrics for SBA and all the test results provides best optimal results. Moreover the projected model is improved with an average percentage of 83 as compared to existing models.

3.
Sci Rep ; 14(1): 2820, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307901

RESUMO

This paper proposes and executes an in-depth learning-based image processing approach for self-picking apples. The system includes a lightweight one-step detection network for fruit recognition. As well as computer vision to analyze the point class and anticipate a correct approach position for each fruit before grabbing. Using the raw inputs from a high-resolution camera, fruit recognition and instance segmentation are done on RGB photos. The computer vision classification and grasping systems are integrated and outcomes from tree-grown foods are provided as input information and output methodology poses for every apple and orange to robotic arm execution. Before RGB picture data is acquired from laboratory and plantation environments, the developed vision method will be evaluated. Robot harvest experiment is conducted in indoor as well as outdoor to evaluate the proposed harvesting system's performance. The research findings suggest that the proposed vision technique can control robotic harvesting effectively and precisely where the success rate of identification is increased above 95% in case of post prediction process with reattempts of less than 12%.


Assuntos
Robótica , Frutas , Processamento de Imagem Assistida por Computador , Força da Mão , Visão Ocular
4.
Math Biosci Eng ; 20(12): 20828-20851, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124578

RESUMO

The security of the Internet of Things (IoT) is crucial in various application platforms, such as the smart city monitoring system, which encompasses comprehensive monitoring of various conditions. Therefore, this study conducts an analysis on the utilization of blockchain technology for the purpose of monitoring Internet of Things (IoT) systems. The analysis is carried out by employing parametric objective functions. In the context of the Internet of Things (IoT), it is imperative to establish well-defined intervals for job execution, ensuring that the completion status of each action is promptly monitored and assessed. The major significance of proposed method is to integrate a blockchain technique with neuro-fuzzy algorithm thereby improving the security of data processing units in all smart city applications. As the entire process is carried out with IoT the security of data in both processing and storage units are not secured therefore confidence level of monitoring units are maximized at each state. Due to the integration process the proposed system model is implemented with minimum energy conservation where 93% of tasks are completed with improved security for about 90%.

5.
Sci Prog ; 106(3): 368504231191657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533330

RESUMO

The developments in the field of artificial intelligence (AI) and decision making systems are identified as virtuous models for banking and finance sector (BFS) applications. Even though AI provides great advantage in application changes it is essential to remodel the system using explainable artificial intelligence (XAI) design system. Also the standard sensing models provides appropriate monitoring values but huge size of sensors is considered as a major drawback. Thus two diverse problems are addressed in this research work where XAI has been integrated with micro electro-mechanical systems (MEMS) for solving the problems related to BFS applications. Further the data security has been enhanced as XAI is implemented with conviction managements and real time experiments are carried out by developing a unique application by integrating new mathematical designs. To validate the effectiveness of BFS application the developed model is tested with five scenarios which includes multiple parametric arrangements with interpretability process. The tested and compared outcomes with existing models indicates that XAI and MEMS provides inordinate improvements in terms of data impairments thus increasing the transparency of the projected system to an average 96%.

6.
Front Bioeng Biotechnol ; 11: 1211143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397968

RESUMO

Purpose: In the contemporary era, a significant number of individuals encounter various health issues, including digestive system ailments, even during their advanced years. The major purpose of this study is based on certain observations that are made in internal digestive systems in order to prevent severe cause that usually occurs in elderly people. Approach: To solve the purpose of the proposed method the proposed system is introduced with advanced features and parametric monitoring system that are based on wireless sensor setups. The parametric monitoring system is integrated with neural network where certain control actions are taken to prevent gastrointestinal activities at reduced data loss. Results: The outcome of the combined process is examined based on four different cases that is designed based on analytical model where control parameters and weight establishments are also determined. As the internal digestive system is monitored the data loss that is present with wireless sensor network must be reduced and proposed approach prevents such data loss with an optimized value of 1.39%. Conclusion: Parametric cases were conducted to evaluate the efficacy of neural networks. The findings indicate a significantly higher effectiveness rate of approximately 68% when compared to the control cases.

7.
PeerJ Comput Sci ; 9: e1709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192458

RESUMO

The process of using robotic technology to examine underwater systems is still a difficult undertaking because the majority of automated activities lack network connectivity. Therefore, the suggested approach finds the main hole in undersea systems and fills it using robotic automation. In the predicted model, an analytical framework is created to operate the robot within predetermined areas while maximizing communication ranges. Additionally, a clustering algorithm with a fuzzy membership function is implemented, allowing the robots to advance in accordance with predefined clusters and arrive at their starting place within a predetermined amount of time. A cluster node is connected in each clustered region and provides the central control center with the necessary data. The weights are evenly distributed, and the designed robotic system is installed to prevent an uncontrolled operational state. Five different scenarios are used to test and validate the created model, and in each case, the proposed method is found to be superior to the current methodology in terms of range, energy, density, time periods, and total metrics of operation.

8.
Diagnostics (Basel) ; 12(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36359592

RESUMO

To avoid dire situations, the medical sector must develop various methods for quickly and accurately identifying infections in remote regions. The primary goal of the proposed work is to create a wearable device that uses the Internet of Things (IoT) to carry out several monitoring tasks. To decrease the amount of communication loss as well as the amount of time required to wait before detection and improve detection quality, the designed wearable device is also operated with a multi-objective framework. Additionally, a design method for wearable IoT devices is established, utilizing distinct mathematical approaches to solve these objectives. As a result, the monitored parametric values are saved in a different IoT application platform. Since the proposed study focuses on a multi-objective framework, state design and deep learning (DL) optimization techniques are combined, reducing the complexity of detection in wearable technology. Wearable devices with IoT processes have even been included in current methods. However, a solution cannot be duplicated using mathematical approaches and optimization strategies. Therefore, developed wearable gadgets can be applied to real-time medical applications for fast remote monitoring of an individual. Additionally, the proposed technique is tested in real-time, and an IoT simulation tool is utilized to track the compared experimental results under five different situations. In all of the case studies that were examined, the planned method performs better than the current state-of-the-art methods.

9.
Diagnostics (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428903

RESUMO

The majority of people in the modern biosphere struggle with depression as a result of the coronavirus pandemic's impact, which has adversely impacted mental health without warning. Even though the majority of individuals are still protected, it is crucial to check for post-corona virus symptoms if someone is feeling a little lethargic. In order to identify the post-coronavirus symptoms and attacks that are present in the human body, the recommended approach is included. When a harmful virus spreads inside a human body, the post-diagnosis symptoms are considerably more dangerous, and if they are not recognised at an early stage, the risks will be increased. Additionally, if the post-symptoms are severe and go untreated, it might harm one's mental health. In order to prevent someone from succumbing to depression, the technology of audio prediction is employed to recognise all the symptoms and potentially dangerous signs. Different choral characters are used to combine machine-learning algorithms to determine each person's mental state. Design considerations are made for a separate device that detects audio attribute outputs in order to evaluate the effectiveness of the suggested technique; compared to the previous method, the performance metric is substantially better by roughly 67%.

10.
Comput Intell Neurosci ; 2022: 8356081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211022

RESUMO

Diabetes problems can lead to a condition called diabetic retinopathy (DR), which permanently damages the blood vessels in the retina. If not treated, DR is a significant cause of blindness. The only DR treatments currently accessible are those that block or delay vision loss, which emphasizes the value of routine scanning with high-efficiency computer-based technologies to identify patients early. The major goal of this study is to employ a deep learning neural network to identify diabetic retinopathy in the retina's blood vessels. The NN classifier is put to the test using the input fundus image and DR database. It effectively contrasts retinal images and distinguishes between classes when there is a legitimate edge. For the resolution of the problems in the photographs, it is particularly useful. Here, it will be tested to see if the classification of diabetic retinopathy is normal or abnormal. Modifying the existing study's conclusion strategy, existing diabetic retinopathy techniques have sensitivity, specificity, and accuracy levels that are much lower than what is required for this research.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Retinopatia Diabética/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Retina
11.
Comput Intell Neurosci ; 2022: 7298903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052039

RESUMO

Lung disease is one of the most harmful diseases in traditional days and is the same nowadays. Early detection is one of the most crucial ways to prevent a human from developing these types of diseases. Many researchers are involved in finding various techniques for predicting the accuracy of the diseases. On the basis of the machine learning algorithm, it was not possible to predict the better accuracy when compared to the deep learning technique; this work has proposed enhanced artificial neural network approaches for the accuracy of lung diseases. Here, the discrete Fourier transform and the Burg auto-regression techniques are used for extracting the computed tomography (CT) scan images, and feature reduction takes place by using principle component analysis (PCA). This proposed work has used the 120 subjective datasets from public landmarks with and without lung diseases. The given dataset is trained by using an enhanced artificial neural network (ANN). The preprocessing techniques are handled by using a Gaussian filter; thus, our proposed approach provides enhanced classification accuracy. Finally, our proposed method is compared with the existing machine learning approach based on its accuracy.


Assuntos
Pneumopatias , Redes Neurais de Computação , Algoritmos , Humanos , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Aprendizado de Máquina
12.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015878

RESUMO

High security for physical items such as intelligent machinery and residential appliances is provided via the Internet of Things (IoT). The physical objects are given a distinct online address known as the Internet Protocol to communicate with the network's external foreign entities through the Internet (IP). IoT devices are in danger of security issues due to the surge in hacker attacks during Internet data exchange. If such strong attacks are to create a reliable security system, attack detection is essential. Attacks and abnormalities such as user-to-root (U2R), denial-of-service, and data-type probing could have an impact on an IoT system. This article examines various performance-based AI models to predict attacks and problems with IoT devices with accuracy. Particle Swarm Optimization (PSO), genetic algorithms, and ant colony optimization were used to demonstrate the effectiveness of the suggested technique concerning four different parameters. The results of the proposed method employing PSO outperformed those of the existing systems by roughly 73 percent.


Assuntos
Internet das Coisas , Segurança Computacional , Coleta de Dados , Internet
13.
Comput Intell Neurosci ; 2022: 2609387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942449

RESUMO

A neurological disorder is a problem with the neural system of the body, as a brain tumor is one of the deadliest neurological conditions and it requires an early and effective detection procedure. The existing detection and diagnosis methods for image evaluation are based on the judgment of the radiologist and neurospecialist, where a risk of human mistakes can be found. Therefore, a new flanged method and methodology for detecting brain tumors using magnetic resonance imaging and the artificial neural network (ANN) technique are applied. The research is based on an artificial neural network-based behavioral examination of neurological disorders. In this study, an artificial neural network is used to detect a brain tumor as early as possible. The current work develops an effective approach for detecting cancer from a given brain MRI and recognizing the retrieved data for further use. To obtain the desired result, the following three procedures are used: preprocessing, feature extraction, training, and detection or classification. A Gaussian filter is also incorporated to eliminate noise from the image, and for texture feature extraction, GLCM is considered in this study. Further entropy, contrast, energy, homogeneity, and other GLCM texture properties of tumor categorization are measured using the ANFIS approach, which determines if the tumor is normal, benign, or malignant. Future research will focus on applying advanced texture analysis to classify brain tumors into distinct classes in order to improve the accuracy of brain tumor diagnosis. In the future, MRI brain imaging will be used to classify metastatic brain tumors.


Assuntos
Algoritmos , Neoplasias Encefálicas , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem
14.
Front Public Health ; 10: 893989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784247

RESUMO

The majority of the current-generation individuals all around the world are dealing with a variety of health-related issues. The most common cause of health problems has been found as depression, which is caused by intellectual difficulties. However, most people are unable to recognize such occurrences in them, and no procedures for discriminating them from normal people have been created so far. Even some advanced technologies do not support distinct classes of individuals as language writing skills vary greatly across numerous places, making the central operations cumbersome. As a result, the primary goal of the proposed research is to create a unique model that can detect a variety of diseases in humans, thereby averting a high level of depression. A machine learning method known as the Convolutional Neural Network (CNN) model has been included into this evolutionary process for extracting numerous features in three distinct units. The CNN also detects early-stage problems since it accepts input in the form of writing and sketching, both of which are turned to images. Furthermore, with this sort of image emotion analysis, ordinary reactions may be easily differentiated, resulting in more accurate prediction results. The characteristics such as reference line, tilt, length, edge, constraint, alignment, separation, and sectors are analyzed to test the usefulness of CNN for recognizing abnormalities, and the extracted features provide an enhanced value of around 74%higher than the conventional models.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Redes Neurais de Computação , Percepção
15.
Front Public Health ; 10: 909628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677767

RESUMO

The production, testing, and processing of signals without any interpretation is a crucial task with time scale periods in today's biological applications. As a result, the proposed work attempts to use a deep learning model to handle difficulties that arise during the processing stage of biomedical information. Deep Conviction Systems (DCS) are employed at the integration step for this procedure, which uses classification processes with a large number of characteristics. In addition, a novel system model for analyzing the behavior of biomedical signals has been developed, complete with an output tracking mechanism that delivers transceiver results in a low-power implementation approach. Because low-power transceivers are integrated, the cost of implementation for designated output units will be decreased. To prove the effectiveness of DCS feasibility, convergence and robustness characteristics are observed by incorporating an interface system that is processed with a deep learning toolbox. They compared test results using DCS to prove that all experimental scenarios prove to be much more effective for about 79 percent for variations with time periods.

16.
Comput Intell Neurosci ; 2022: 3211512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655498

RESUMO

The power of wireless network sensor technologies has enabled the development of large-scale in-house monitoring systems. The sensor may play a big part in landslide forecasting where the sensor linked to the WLAN protocol can usefully map, detect, analyze, and predict landslide distant areas, etc. A wireless sensor network comprises autonomous sensors geographically dispersed for monitoring physical or environmental variables, comprising temperature, sound, pressure, etc. This remote management service contains a monitoring system with more information and helps the user grasp the problem and work hard when WSN is a catastrophic event tracking prospect. This paper illustrates the effectiveness of Wireless Sensor Networks (WSN) and artificial intelligence (AI) algorithms (i.e., Logistic Regression) for landslide monitoring in real-time. The WSN system monitors landslide causative factors such as precipitation, Earth moisture, pore-water-pressure (PWP), and motion in real-time. The problems associated with land life surveillance and the context generated by data are given to address these issues. The Wireless Sensors Network (WSN) and Artificial Intelligence (AI) give the option of monitoring fast landslides in real-time conditions. A proposed system in this paper shows real-time monitoring of landslides to preternaturally inform people through an alerting system to risky situations.


Assuntos
Inteligência Artificial , Deslizamentos de Terra , Algoritmos , Humanos , Movimento (Física) , Tecnologia sem Fio
17.
Comput Intell Neurosci ; 2022: 5066147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607469

RESUMO

The estimated 30 million children and adults are suffering with diabetes across the world. A person with diabetes can recognize several symptoms, and it can also be tested using retina image as diabetes also affects the human eye. The doctor is usually able to detect retinal changes quickly and can help prevent vision loss. Therefore, regular eye examinations are very important. Diabetes is a chronic disease that affects various parts of the human body including the retina. It can also be considered as major cause for blindness in developed countries. This paper deals with classification of retinal image into diabetes or not with the help of deep learning algorithms and architecture. Hence, deep learning is beneficial for classification of medical images specifically such a complex image of human retina. A large number of image data are considered throughout the project on which classification is performed by using binary classifier. On applying certain deep learning algorithms, model results into the training accuracy of 96.68% and validation accuracy of 66.82%. Diabetic retinopathy can be considered as an effective and efficient method for diabetes detection.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Criança , Diabetes Mellitus/diagnóstico , Retinopatia Diabética/diagnóstico , Face , Humanos , Retina
18.
Life (Basel) ; 12(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35330177

RESUMO

Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA