Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961091

RESUMO

The mammalian gut microbiome influences numerous developmental processes. In human infants it has been linked with cognition, social skills, hormonal responses to stress, and brain connectivity. Yet, these associations are not necessarily causal. The present study tested whether two microbial stool communities, common in human infants, affected behavior, myelination, dendritic morphology, and spine density when used to colonize mouse models. Humanized animals were more like specific-pathogen free mice than germ-free mice for most phenotypes, although in males, both humanized groups were less social. Both humanized groups had thinner myelin sheaths in the hippocampus, than did germ-free animals. Humanized animals were similar to each other except for dendritic morphology and spine density where one group had greater dendritic length in the prefrontal cortex, greater dendritic volume in the nucleus accumbens, and greater spine density in both regions, compared to the other. Results add to a body of literature suggesting the gut microbiome impacts brain development. Teaser: Fecal transplants from human infants with highly abundant Bifidobacterium , an important inhabitant of the intestinal tract of breastfed newborns, may promote brain connectivity in mice.

2.
Microorganisms ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677486

RESUMO

Many antibiotic-resistant bacteria carry resistance genes on conjugative plasmids that are transferable to commensals and pathogens. We determined the ability of multiple enteric bacteria to acquire and retransfer a broad-host-range plasmid RP4. We used human-derived commensal Escherichia coli LM715-1 carrying a chromosomal red fluorescent protein gene and green fluorescent protein (GFP)-labeled broad-host-range RP4 plasmid with ampR, tetR, and kanR in in vitro matings to rifampicin-resistant recipients, including Escherichia coli MG1655, Dec5α, Vibrio cholerae, Pseudomonas putida, Pseudomonas aeruginosa, Klebsiella pneumoniae, Citrobacter rodentium, and Salmonella Typhimurium. Transconjugants were quantified on selective media and confirmed using fluorescence microscopy and PCR for the GFP gene. The plasmid was transferred from E. coli LM715-1 to all tested recipients except P. aeruginosa. Transfer frequencies differed between specific donor-recipient pairings (10-2 to 10-8). Secondary retransfer of plasmid from transconjugants to E. coli LM715-1 occurred at frequencies from 10-2 to 10-7. A serial passage plasmid persistence assay showed plasmid loss over time in the absence of antibiotics, indicating that the plasmid imposed a fitness cost to its host, although some plasmid-bearing cells persisted for at least ten transfers. Thus, the RP4 plasmid can transfer to multiple clinically relevant bacterial species without antibiotic selection pressure.

3.
Front Microbiol ; 13: 800269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591997

RESUMO

Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.

4.
Gut Microbes ; 14(1): 2064706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442154

RESUMO

Campylobacter jejuni is a leading cause of gastroenteritis that has been causally linked with development of the autoimmune peripheral neuropathy Guillain Barré Syndrome (GBS). Previously, we showed that C. jejuni isolates from human enteritis patients induced Type1/17-cytokine dependent colitis in interleukin-10 (IL-10)-/- mice, while isolates from GBS patients colonized these mice without colitis but instead induced autoantibodies that cross-reacted with the sialylated oligosaccharide motifs on the LOS of GBS-associated C. jejuni and the peripheral nerve gangliosides. We show here that infection of IL-10-/- mice with the GBS but not the colitis isolate led to sciatic nerve inflammation and abnormal gait and hind limb movements, with character and timing consistent with this syndrome in humans. Autoantibody responses and associated nerve histologic changes were dependent on IL-4 production by CD4 T cells. We further show that Siglec-1 served as a central antigen presenting cell receptor mediating the uptake of the GBS isolates via interaction with the sialylated oligosaccharide motifs found specifically on the LOS of GBS-associated C. jejuni, and the ensuing T cell differentiation and autoantibody elicitation. Sialylated oligosaccharide motifs on the LOS of GBS-associated C. jejuni therefore acted as both the Siglec-1-ligand for phagocytosis, as well as the epitope for autoimmunity. Overall, we present a mouse model of an autoimmune disease induced directly by a bacterium that is dependent upon Siglec-1 and IL-4. We also demonstrate the negative regulatory role of IL-10 in C. jejuni induced autoimmunity and provide IL-4 and Siglec-1 blockade as potential therapeutic interventions against GBS.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Colite , Microbioma Gastrointestinal , Síndrome de Guillain-Barré , Animais , Autoanticorpos , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Colite/microbiologia , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/patologia , Humanos , Interleucina-10/genética , Interleucina-4 , Lipopolissacarídeos , Camundongos , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico
5.
Comp Med ; 72(2): 63-77, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272743

RESUMO

Campylobacter jejuni is an important cause of bacterial gastroenteritis worldwide and is linked to Guillain-Barré syndrome (GBS), a debilitating postinfectious polyneuropathy. The immunopathogenesis of GBS involves the generation of antibodies that are cross reactive to C. jejuni lipooligosaccharide and structurally similar peripheral nerve gangliosides. Both the C. jejuni infecting strain and host factors contribute to GBS development. GBS pathogenesis is associated with Th2-mediated responses in patients. Moreover, induction of IgG1 antiganglioside antibodies in association with colonic Th2-mediated immune responses has been reported in C. jejuni-infected C57BL/6 IL10-/- mice at 4 to 6 wk after infection. We hypothesized that, due to their Th2 immunologic bias, BALB/c mice would develop autoantibodies and signs of peripheral neuropathy after infection with a GBS patient-derived strain of C. jejuni (strain 260.94). WT and IL10-/- BALB/c mice were orally inoculated with C. jejuni 260.94, phenotyped weekly for neurologic deficits, and euthanized after 5 wk. Immune responses were assessed as C. jejuni-specific and antiganglioside antibodies in plasma and cytokine production and histologic lesions in the proximal colon. Peripheral nerve lesions were assessed in dorsal root ganglia and their afferent nerve fibers by scoring immunohistochemically labeled macrophages through morphometry. C. jejuni 260.94 stably colonized both WT and IL10-/- mice and induced systemic Th1/Th17-mediated immune responses with significant increases in C. jejuni-specific IgG2a, IgG2b, and IgG3 plasma antibodies. However, C. jejuni 260.94 did not induce IgG1 antiganglioside antibodies, colitis, or neurologic deficits or peripheral nerve lesions in WT or IL10-/- mice. Both WT and IL10-/- BALB/c mice showed relative protection from development of Th2-mediated immunity and antiganglioside antibodies as compared with C57BL/6 IL10-/- mice. Therefore, BALB/c mice infected with C. jejuni 260.94 are not an effective disease model but provide the opportunity to study the role of immune mechanisms and host genetic background in the susceptibility to post infectious GBS.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Síndrome de Guillain-Barré , Animais , Infecções por Campylobacter/complicações , Humanos , Imunoglobulina G , Interleucina-10 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
6.
Comp Med ; 71(1): 46-65, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334395

RESUMO

The nematode Trichuris muris has been shown to interact with specific enteric bacteria, but its effects on the composition of its host's microbial community are not fully understood. We hypothesized that Trichuris muris-infected mice would have altered colon microbiota as compared with uninfected mice. Colon histopathology and microbial community structure and composition were examined in mouse models of colitis (C3BirTLR4-/- IL10-/- and C3H/HeJ TLR4-/- IL10+/+ mice) with and without T. muris infection, in uninfected C3BirIL10-/- mice with and without spontaneous colitis, and in normal C3H/ HeJ mice. T. muris-infected mice developed colon lesions that were more severe than those seen in IL10-deficient mice. Ap- proximately 80% of infected IL10-/- mice had colon neutrophilic exudates, and some had extraintestinal worms and bacteria. The composition and structure of proximal colon microbiota were assessed by using terminal restriction fragment length polymorphism analysis targeting the bacterial 16S rRNA gene. Colon microbiota in C3BirIL10-/- and C3H/HeJ mice differed both qualitatively and quantitatively. Trichuris infection significantly altered the relative abundance of individual operational taxonomic units [OTU] but not the composition (presence or absence of OTU) of colon microbiota in the 2 mouse genotypes. When C3BirIL10-/- and C3H/HeJ mouse OTU were considered separately, Trichuris was found to affect the microbiota of C3BirIL10-/- mice but not of C3H/HeJ mice. Even though 34 of the 75 (45%) C3BirIL10-/- mice had spontaneous colitis, neither qualitative nor quantitative differences were detected in microbiota between colitic or noncolitic C3BirIL10-/- mice or noncolitic C3H/HeJ mice. Therefore, Trichuris-infected mice developed distinct microbial communities that were influenced by host background genes; these alterations cannot be attributed solely to colonic inflammation.


Assuntos
Colite , Microbiota , Animais , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C3H , RNA Ribossômico 16S , Trichuris
7.
Front Microbiol ; 11: 579989, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240235

RESUMO

Evolution experiments in the laboratory have focused heavily on model organisms, often to the exclusion of clinically relevant pathogens. The foodborne bacterial pathogen Campylobacter jejuni belongs to a genus whose genomes are small compared to those of its closest genomic relative, the free-living genus Sulfurospirillum, suggesting genome reduction during the course of evolution to host association. In an in vitro experiment, C. jejuni serially passaged in rich medium in the laboratory exhibited loss of flagellar motility-an essential function for host colonization. At early time points the motility defect was often reversible, but after 35 days of serial culture, motility was irreversibly lost in most cells in 5 independently evolved populations. Population re-sequencing revealed disruptive mutations to genes in the flagellar transcriptional cascade, rpoN (σ54)-therefore disrupting the expression of the genes σ54 regulates-coupled with deletion of rpoN in all evolved lines. Additional mutations were detected in virulence-related loci. In separate in vivo experiments, we demonstrate that a phase variable (reversible) motility mutant carrying an adenine deletion within a homopolymeric tract resulting in truncation of the flagellar biosynthesis gene fliR was deficient for colonization in a C57BL/6 IL-10-/- mouse disease model. Re-insertion of an adenine residue partially restored motility and ability to colonize mice. Thus, a pathogenic C. jejuni strain was rapidly attenuated by experimental laboratory evolution and demonstrated genomic instability during this evolutionary process. The changes observed suggest C. jejuni is able to evolve in a novel environment through genome reduction as well as transition, transversion, and slip-strand mutations.

8.
J Neuroimmunol ; 337: 577048, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678855

RESUMO

The peripheral neuropathy Guillain-Barré Syndrome can follow Campylobacter jejuni infection when outer core lipooligosaccharides induce production of neurotoxic anti-ganglioside antibodies. We hypothesized that gut microbiota depletion with an antibiotic would increase C. jejuni colonization, severity of gastroenteritis, and GBS. Microbiota depletion increased C. jejuni colonization, invasion, and colitis with Type 1/17 T cells in gut lamina propria. It also stimulated Type 1/17 anti-C. jejuni and -antiganglioside-antibodies, Type 2 anti-C. jejuni and -antiganglioside antibodies, and neurologic phenotypes. Results indicate that both C. jejuni strain and gut microbiota affect development of inflammation and GBS and suggest that probiotics following C. jejuni infection may ameliorate inflammation and autoimmune disease.


Assuntos
Antibacterianos/toxicidade , Autoimunidade/efeitos dos fármacos , Infecções por Campylobacter/patologia , Colite/patologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Autoimunidade/fisiologia , Infecções por Campylobacter/induzido quimicamente , Infecções por Campylobacter/imunologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/imunologia , Colite/induzido quimicamente , Colite/imunologia , Feminino , Microbioma Gastrointestinal/fisiologia , Síndrome de Guillain-Barré/induzido quimicamente , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Índice de Gravidade de Doença
9.
Microbiome ; 5(1): 92, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789710

RESUMO

BACKGROUND: Campylobacter jejuni is the leading antecedent infection to the autoimmune neuropathy Guillain-Barré syndrome (GBS), which is accompanied by an autoimmune anti-ganglioside antibody attack on peripheral nerves. Previously, we showed that contrasting immune responses mediate C. jejuni induced colitis and autoimmunity in interleukin-10 (IL-10)-deficient mice, dependent upon the infecting strain. Strains from colitis patients elicited T helper 1 (TH1)-dependent inflammatory responses while strains from GBS patients elicited TH2-dependent autoantibody production. Both syndromes were exacerbated by antibiotic depletion of the microbiota, but other factors controlling susceptibility to GBS are unknown. METHODS: Using 16S rRNA gene high-throughput sequencing, we examined whether structure of the gut microbial community alters host (1) gastrointestinal inflammation or (2) anti-ganglioside antibody responses after infection with C. jejuni strains from colitis or GBS patients. We compared these responses in C57BL/6 mice with either (1) stable human gut microbiota (Humicrobiota) transplants or (2) conventional mouse microbiota (Convmicrobiota). RESULTS: Inoculating germ-free C57BL/6 wild-type (WT) mice with a mixed human fecal slurry provided a murine model that stably passed its microbiota over >20 generations. Mice were housed in specific pathogen-free (SPF) facilities, while extra precautions of having caretakers wear sterile garb along with limited access ensured that no mouse pathogens were acquired. Humicrobiota conferred many changes upon the WT model in contrast to previous results, which showed only colonization with no disease after C. jejuni challenge. When compared to Convmicrobiota mice for susceptibility to C. jejuni enteric or GBS patient strains, infected Humicrobiota mice had (1) 10-100 fold increases in C. jejuni colonization of both strains, (2) pathologic change in draining lymph nodes but only mild changes in colon or cecal lamina propria, (3) significantly lower Th1/Th17-dependent anti-C. jejuni responses, (4) significantly higher IL-4 responses at 5 but not 7 weeks post infection (PI), (5) significantly higher Th2-dependent anti-C. jejuni responses, and (6) significantly elevated anti-ganglioside autoantibodies after C. jejuni infection. These responses in Humicrobiota mice were correlated with a dominant Bacteroidetes and Firmicutes microbiota. CONCLUSIONS: These data demonstrate that Humicrobiota altered host-pathogen interactions in infected mice, increasing colonization and Th-2 and autoimmune responses in a C. jejuni strain-dependent manner. Thus, microbiota composition is another factor controlling susceptibility to GBS.


Assuntos
Autoanticorpos/biossíntese , Infecções por Campylobacter/imunologia , Transplante de Microbiota Fecal , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/microbiologia , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoimunidade , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/imunologia , Colite/etiologia , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Interleucina-10/imunologia , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
10.
Anim Health Res Rev ; 18(2): 99-111, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29665882

RESUMO

Campylobacter jejuni is an important zoonotic pathogen recently designated a serious antimicrobial resistant (AR) threat. While most patients with C. jejuni experience hemorrhagic colitis, serious autoimmune conditions can follow including inflammatory bowel disease (IBD) and the acute neuropathy Guillain Barré Syndrome (GBS). This review examines inter-relationships among factors mediating C. jejuni diarrheal versus autoimmune disease especially AR C. jejuni and microbiome shifts. Because both susceptible and AR C. jejuni are acquired from animals or their products, we consider their role in harboring strains. Inter-relationships among factors mediating C. jejuni colonization, diarrheal and autoimmune disease include C. jejuni virulence factors and AR, the enteric microbiome, and host responses. Because AR C. jejuni have been suggested to affect the severity of disease, length of infections and propensity to develop GBS, it is important to understand how these interactions occur when strains are under selection by antimicrobials. More work is needed to elucidate host-pathogen interactions of AR C. jejuni compared with susceptible strains and how AR C. jejuni are maintained and evolve in animal reservoirs and the extent of transmission to humans. These knowledge gaps impair the development of effective strategies to prevent the emergence of AR C. jejuni in reservoir species and human populations.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Microbiota , Animais , Síndrome de Guillain-Barré , Interações Hospedeiro-Patógeno , Humanos , Fatores de Virulência
11.
Funct Ecol ; 30(9): 1549-1557, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27833242

RESUMO

Social rank can profoundly affect many aspects of mammalian reproduction and stress physiology, but little is known about how immune function is affected by rank and other socio-ecological factors in free-living animals.In this study we examine the effects of sex, social rank, and reproductive status on immune function in long-lived carnivores that are routinely exposed to a plethora of pathogens, yet rarely show signs of disease.Here we show that two types of immune defenses, complement-mediated bacterial killing capacity (BKC) and total IgM, are positively correlated with social rank in wild hyenas, but that a third type, total IgG, does not vary with rank.Female spotted hyenas, which are socially dominant to males in this species, have higher BKC, and higher IgG and IgM concentrations, than do males.Immune defenses are lower in lactating than pregnant females, suggesting the immune defenses may be energetically costly.Serum cortisol and testosterone concentrations are not reliable predictors of basic immune defenses in wild female spotted hyenas.These results suggest that immune defenses are costly and multiple socioecological variables are important determinants of basic immune defenses among wild hyenas. Effects of these variables should be accounted for when attempting to understand disease ecology and immune function.

12.
Front Microbiol ; 7: 589, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199922

RESUMO

Campylobacter jejuni is a zoonotic pathogen and the most common bacterial cause of human gastroenteritis worldwide. With the increase of antibiotic resistance to fluoroquinolones and macrolides, the drugs of choice for treatment, C. jejuni was recently classified as a serious antimicrobial resistant threat. Here, we characterized 94 C. jejuni isolates collected from patients at four Michigan hospitals in 2011 and 2012 to determine the frequency of resistance and association with phylogenetic lineages. The prevalence of resistance to fluoroquinolones (19.1%) and macrolides (2.1%) in this subset of C. jejuni isolates from Michigan was similar to national reports. High frequencies of fluoroquinolone-resistant C. jejuni isolates, however, were recovered from patients with a history of foreign travel. A high proportion of these resistant isolates were classified as multilocus sequence type (ST)-464, a fluoroquinolone-resistant lineage that recently emerged in Europe. A significantly higher prevalence of tetracycline-resistant C. jejuni was also found in Michigan and resistant isolates were more likely to represent ST-982, which has been previously recovered from ruminants and the environment in the U.S. Notably, patients with tetracycline-resistant C. jejuni infections were more likely to have contact with cattle. These outcomes prompt the need to monitor the dissemination and diversification of imported fluoroquinolone-resistant C. jejuni strains and to investigate the molecular epidemiology of C. jejuni recovered from cattle and farm environments to guide mitigation strategies.

13.
PLoS One ; 10(10): e0137679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444876

RESUMO

Evolutionary processes have shaped the vertebrate immune system over time, but proximal mechanisms control the onset, duration, and intensity of immune responses. Based on testing of the hygiene hypothesis, it is now well known that microbial exposure is important for proper development and regulation of the immune system. However, few studies have examined the differences between wild animals in their natural environments, in which they are typically exposed to a wide array of potential pathogens, and their conspecifics living in captivity. Wild spotted hyenas (Crocuta crocuta) are regularly exposed to myriad pathogens, but there is little evidence of disease-induced mortality in wild hyena populations, suggesting that immune defenses are robust in this species. Here we assessed differences in immune defenses between wild spotted hyenas that inhabit their natural savanna environment and captive hyenas that inhabit a captive environment where pathogen control programs are implemented. Importantly, the captive population of spotted hyenas was derived directly from the wild population and has been in captivity for less than four generations. Our results show that wild hyenas have significantly higher serum antibody concentrations, including total IgG and IgM, natural antibodies, and autoantibodies than do captive hyenas; there was no difference in the bacterial killing capacity of sera collected from captive and wild hyenas. The striking differences in serum antibody concentrations observed here suggest that complementing traditional immunology studies, with comparative studies of wild animals in their natural environment may help to uncover links between environment and immune function, and facilitate progress towards answering immunological questions associated with the hygiene hypothesis.


Assuntos
Animais Selvagens/imunologia , Animais de Zoológico/imunologia , Anticorpos/sangue , Formação de Anticorpos/imunologia , Hyaenidae/imunologia , Animais , Anticorpos Antinucleares/sangue , Ecologia , Meio Ambiente , Escherichia coli/imunologia , Feminino , Hemocianinas/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Quênia , Masculino , Proteus mirabilis/imunologia
14.
Vet Parasitol ; 212(3-4): 239-52, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26277566

RESUMO

Trichuris muris infected C57BL/6 mice are a frequently studied model of immune mediated resistance to helminths. Our objective was to characterize dose-dependent gastrointestinal (GI) disease and pathology due to Trichuris in C57BL/6 mice with varying degrees of IL-10 sufficiency. These mice can serve as a model for other animals (dogs, cattle) and humans where IL-10 polymorphisms have been associated with disease susceptibility and may affect susceptibility to whipworm. C57BL/6 IL-10(+/+), IL-10(+/-) and IL-10(-/-) mice were infected with T. muris (J strain) in a dose response study. T. muris produced dose-dependent disease in IL-10(-/-) mice. Ninety percent of mice receiving the high dose (75 ova) had severe disease necessitating early euthanasia, while the medium dose (50 ova) resulted in 100% early euthanasia of males/75% of females, and the low dose (25 ova) in 100% early euthanasia of males/25% of females. Having some IL-10 as in heterozygotes did not rescue all infected mice from effects of the high dose. 2/21 IL-10(-/-), 1/17 IL-10(+/-), and 0/17 IL-10(+/+) mice in the high dose group had severe peritonitis and extra-intestinal bacteria confirmed by fluorescent 16S rDNA analysis of peritoneal organ surfaces. Three of twenty one IL-10(-/-) had demonstrable extra-intestinal T. muris adults. Although free from viral pathogens, 12/21 IL-10(-/-), 6/17 IL-10(+/-), and 4/17 IL-10(+/+) infected mice had hepatitis, while control mice of all genotypes did not. Mice had evidence of inflammation of serosal surfaces of liver, spleen and GI tract even when extraintestinal Trichuris were not found. Blinded histopathology scoring revealed that even when infected IL-10(-/-) mice displayed few, if any, clinical signs, levels of gut inflammation did not vary significantly from those mice euthanized early due to severe disease. To examine whether antibiotics or corticosteroids could reverse severe disease and lesions, IL-10(-/-) mice infected with T. muris were treated with metronidazole or prednisolone prior to and throughout 40 days of infection. Mice given prednisolone had severe disease and lesions with the highest mortality rate. Mice given metronidazole had a significantly lower mortality rate than those given prednisolone, but GI lesions were of similar severity and distribution including peritonitis. Mortality was associated with extraintestinal worms and bacteria and further supported a role for enteric bacteria in this pathogenesis.


Assuntos
Interleucina-10/farmacologia , Metronidazol/farmacologia , Prednisolona/farmacologia , Tricuríase/patologia , Trichuris , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Feminino , Regulação da Expressão Gênica/fisiologia , Inflamação , Interleucina-10/genética , Interleucina-10/metabolismo , Intestinos/parasitologia , Intestinos/patologia , Transtornos Leucocíticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose , Tricuríase/genética
15.
Vet Res Commun ; 38(2): 165-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24488231

RESUMO

Previous research has shown that spotted hyenas (Crocuta crocuta) regularly survive exposure to deadly pathogens such as rabies, canine distemper virus, and anthrax, suggesting that they have robust immune defenses. Toll-like receptors (TLRs) recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses. TLR genes are evolutionarily conserved, and assessing TLR expression in various tissues can provide insight into overall immunological organization and function. Studies of the hyena immune system have been minimal thus far due to the logistical and ethical challenges of sampling and preserving the immunological tissues of this and other long-lived, wild species. Tissue samples were opportunistically collected from captive hyenas humanely euthanized for a separate study. We developed primers to amplify partial sequences for TLRs 1-10, sequenced the amplicons, compared sequence identity to those in other mammals, and quantified TLR expression in lymph nodes, spleens, lungs, and pancreases. Results show that hyena TLR DNA and protein sequences are similar to TLRs in other mammals, and that TLRs 1-10 were expressed in all tissues tested. This information will be useful in the development of new assays to understand the interactions among the hyena immune system, pathogens, and the microbial communities that inhabit hyenas.


Assuntos
Regulação da Expressão Gênica , Hyaenidae/genética , Hyaenidae/imunologia , Receptores Toll-Like/genética , Animais , Gatos , Perfilação da Expressão Gênica , Humanos , Camundongos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Receptores Toll-Like/imunologia
16.
Cell Commun Signal ; 11: 79, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144181

RESUMO

BACKGROUND: Enteric pathogens utilize a distinct set of proteins to modulate host cell signaling events that promote host cell invasion, induction of the inflammatory response, and intracellular survival. Human infection with Campylobacter jejuni, the causative agent of campylobacteriosis, is characterized by diarrhea containing blood and leukocytes. The clinical presentation of acute disease, which is consistent with cellular invasion, requires the delivery of the Campylobacter invasion antigens (Cia) to the cytosol of host cells via a flagellar Type III Secretion System (T3SS). We identified a novel T3SS effector protein, which we termed CiaD that is exported from the C. jejuni flagellum and delivered to the cytosol of host cells. RESULTS: We show that the host cell kinases p38 and Erk 1/2 are activated by CiaD, resulting in the secretion of interleukin-8 (IL-8) from host cells. Additional experiments revealed that CiaD-mediated activation of p38 and Erk 1/2 are required for maximal invasion of host cells by C. jejuni. CiaD contributes to disease, as evidenced by infection of IL-10 knockout mice. Noteworthy is that CiaD contains a Mitogen-activated protein (MAP) kinase-docking site that is found within effector proteins produced by other enteric pathogens. These findings indicate that C. jejuni activates the MAP kinase signaling pathways Erk 1/2 and p38 to promote cellular invasion and the release of the IL-8 pro-inflammatory chemokine. CONCLUSIONS: The identification of a novel T3SS effector protein from C. jejuni significantly expands the knowledge of virulence proteins associated with C. jejuni pathogenesis and provides greater insight into the mechanism utilized by C. jejuni to invade host cells.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/metabolismo , Campylobacter jejuni/fisiologia , Sistema de Sinalização das MAP Quinases , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/patogenicidade , Linhagem Celular , Flagelos/metabolismo , Humanos , Interleucina-10/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Knockout , Mutação , Fatores de Virulência/genética
17.
J Bacteriol ; 194(20): 5707-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23012285

RESUMO

The Campylobacter jejuni human clinical isolates NW and D2600 colonized C57BL/6 interleukin-10-deficient (IL-10(-/-)) mice without inducing a robust inflammatory response (J. A. Bell et al., BMC Microbiol. 9:57, 2009). We announce draft genome sequences of NW and D2600 to facilitate comparisons with strains that induce gastrointestinal inflammation in this mouse model.


Assuntos
Campylobacter jejuni/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Animais , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/isolamento & purificação , Modelos Animais de Doenças , Humanos , Interleucina-10/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular
18.
Microbiology (Reading) ; 158(Pt 5): 1304-1316, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22343355

RESUMO

Human illness due to Camplyobacter jejuni infection is closely associated with consumption of poultry products. We previously demonstrated a 50 % shift in allele frequency (phase variation) in contingency gene Cj1139 (wlaN) during passage of C. jejuni NCTC11168 populations through Ross 308 broiler chickens. We hypothesized that phase variation in contingency genes during chicken passage could promote subsequent colonization and disease in humans. To test this hypothesis, we passaged C. jejuni strains NCTC11168, 33292, 81-176, KanR4 and CamR2 through broiler chickens and analysed the ability of passaged and non-passaged populations to colonize C57BL6 IL-10-deficient mice, our model for human colonization and disease. We utilized fragment analysis and nucleotide sequence analysis to measure phase variation in contingency genes. Passage through the chicken reservoir promoted phase variation in five specific contingency genes, and these 'successful' populations colonized mice. When phase variation did not occur in these same five contingency genes during chicken passage, these 'unsuccessful' populations failed to colonize mice. Phase variation during chicken passage generated small insertions or deletions (indels) in the homopolymeric tract (HT) in contingency genes. Single-colony isolates of C. jejuni strain KanR4 carrying an allele of contingency gene Cj0170 with a10G HT colonized mice at high frequency and caused disease symptoms, whereas single-colony isolates carrying the 9G allele failed to colonize mice. Supporting results were observed for the successful 9G allele of Cj0045 in strain 33292. These data suggest that phase variation in Cj0170 and Cj0045 is strongly associated with mouse colonization and disease, and that the chicken reservoir can play an active role in natural selection, phase variation and disease.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Fatores de Virulência/genética , Alelos , Animais , Campylobacter jejuni/crescimento & desenvolvimento , Galinhas/microbiologia , Regulação Bacteriana da Expressão Gênica , Frequência do Gene , Mutação INDEL , Camundongos , Camundongos Endogâmicos C57BL , Inoculações Seriadas , Virulência
19.
Vet Immunol Immunopathol ; 145(1-2): 110-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22173276

RESUMO

Animals that hunt and scavenge are often exposed to a broad array of pathogens. Theory predicts the immune systems of animals specialized for scavenging should have been molded by selective pressures associated with surviving microbial assaults from their food. Spotted hyenas (Crocuta crocuta) are capable hunters that have recently descended from carrion feeding ancestors. Hyenas have been documented to survive anthrax and rabies infections, and outbreaks of several other viral diseases that decimated populations of sympatric carnivores. In light of the extreme disease resistance manifested by spotted hyenas, our objective was to identify tools available for studying immune function in spotted hyenas and use these tools to document the hyena antibody response to immunization. Domestic cats (Felis catus) are the closest phylogenetic relatives of hyenas that have been studied in detail immunologically, and we hypothesized that anti-cat isotype-specific antibodies would cross react with hyena immunoglobulin epitopes. We used ELISA and Western blots to test isotype-specific anti-feline antibodies for specific cross-reaction to hyena Ig epitopes. Molecular weights of heavy (IgA, IgG, IgM) and light chains of hyena immunoglobulins were determined by protein electrophoresis, and as expected, they were found to be similar to feline immunoglobulins. In order to further validate the cross-reactivity of the anti-feline antibodies and document the hyena humoral response, eight spotted hyenas were immunized with dinitrophenol conjugated keyhole limpet hemocyanin (DNP-KLH) and serum anti-DNP responses were monitored by enzyme-linked immunosorbent assay (ELISA) for one year. The full array of isotype-specific antibodies identified here will allow veterinarians and other researchers to thoroughly investigate the hyena antibody response, and can be used in future studies to test hypotheses about pathogen exposure and immune function in this species.


Assuntos
Hyaenidae/imunologia , Animais , Anticorpos/imunologia , Western Blotting/veterinária , Gatos/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Epitopos/imunologia , Feminino , Imunidade Humoral/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Masculino , Peso Molecular
20.
PLoS One ; 6(1): e16399, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21283682

RESUMO

The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10(-/-) mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64 Mb genome to 200-500 X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.


Assuntos
Adaptação Fisiológica/genética , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Variação Genética , Animais , Infecções por Campylobacter , Genoma Bacteriano/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fases de Leitura Aberta , Inoculações Seriadas , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA