Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
3.
J Thromb Haemost ; 22(1): 172-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678548

RESUMO

BACKGROUND: Neutrophils participate in the pathogenesis of thrombosis through the formation of neutrophil extracellular traps (NETs). Thrombosis is the main cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). Recent studies have shown an increase in NET formation (NETosis) both in patients with JAK2V617F neutrophils and in mouse models, and reported the participation of NETosis in the pathophysiology of thrombosis in mice. OBJECTIVES: This study investigated whether JAK2V617F neutrophils are sufficient to promote thrombosis or whether their cooperation with other blood cell types is necessary. METHODS: NETosis was studied in PF4iCre;Jak2V617F/WT mice expressing JAK2V617F in all hematopoietic lineages, as occurs in MPNs, and in MRP8Cre;Jak2V617F/WT mice in which JAK2V617F is expressed only in leukocytes. RESULTS: In PF4iCre;Jak2V617F/WT mice, an increase in NETosis and spontaneous lung thrombosis abrogated by DNAse administration were observed. The absence of spontaneous NETosis or lung thrombosis in MRP8Cre;Jak2V617F/WT mice suggested that mutated neutrophils alone are not sufficient to induce thrombosis. Ex vivo experiments demonstrated that JAK2V617F-mutated platelets trigger NETosis by JAK2V617F-mutated neutrophils. Aspirin treatment in PF4iCre;Jak2V617F/WT mice reduced NETosis and reduced lung thrombosis. In cytoreductive-therapy-free patients with MPN treated with aspirin, plasma NET marker concentrations were lower than that in patients with MPN not treated with aspirin. CONCLUSION: Our study demonstrates that JAK2V617F neutrophils alone are not sufficient to promote thrombosis; rather, platelets cooperate with neutrophils to promote NETosis in vivo. A new role for aspirin in thrombosis prevention in MPNs was also identified.


Assuntos
Armadilhas Extracelulares , Transtornos Mieloproliferativos , Neoplasias , Trombose , Trombose Venosa , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Neoplasias/metabolismo , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Trombose Venosa/metabolismo , Aspirina
4.
Br J Haematol ; 202(1): 159-167, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37081607

RESUMO

Immune thrombocytopenia (ITP) is defined by a low platelet count that can trigger potentially life-threatening haemorrhages. Three-quarters of adult patients exhibit persistent or chronic disease and require second-line treatments. Among these, rituximab, an anti-CD20 antibody, has yielded valuable results, with global responses in 60% of patients at 6 months and complete responses in 30% at 5 years. Factors predictive of response to ITP therapy would help physicians choose optimal treatments. We retrospectively analysed clinical courses, biological markers and blood lymphocyte subset numbers of 72 patients on rituximab to treat persistent/chronic ITP followed-up in our department between 2007 and 2021, divided into three groups according to the platelet count at 6 months: complete, partial or no response. Among all studied parameters, a low number of CD3- CD16+ CD56+ circulating NK cells was associated with the complete response to rituximab. We also found that, after rituximab therapy, complete responders exhibited increased NK and decreased activated CD8+ T cell percentages. These results emphasize that the role played by NK cells in ITP remains incompletely known but that factors predictive of response to rituximab can be easily derived using blood lymphocyte subset data.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Adulto , Rituximab/uso terapêutico , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Estudos Retrospectivos , Células Matadoras Naturais
5.
Res Pract Thromb Haemost ; 7(2): 100060, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908768

RESUMO

Background: JAK2 V617F and Calreticulin (CALR) mutations are the most frequent molecular causes of Phi-negative myeloproliferative neoplasms (MPN). Patients with CALR mutations are at lower risk of thrombosis than patients with JAK2 V617F. We hypothesized that CALR-mutated blood platelets would have platelet function defects that might explain why these patients are at lower risk of thrombosis. Objectives: Our main objective was to explore and compare platelet function depending on the MPN molecular marker. Methods: We analyzed platelet function in 16 patients with MPN with CALR mutations and 17 patients with JAK2 V617F mutation and compared them with healthy controls. None of these patients was taking antiplatelet therapy. We performed an extensive analysis of platelet function and measured plasmatic soluble P-selectin and CD40L levels. Results: We observed significant defects in platelet aggregation, surface glycoprotein expression, fibrinogen binding, and granule content in platelets from patients with MPN compared with that in controls. Moreover, soluble CD40L and P-selectin levels were elevated in patients with MPN compared with that in controls, suggesting an in vivo platelet preactivation. Comparison of platelet function between patients with CALR and JAK2 V617F MPN revealed only minor differences in platelets from patients with CALR. However, these results need to be interpreted within the context of absence of an inflammatory environment that could impact platelet function during MPN. Conclusions: These results do not support the hypothesis that calreticulin-mutated platelets have platelet function defects that could explain the lower thrombotic risk of patients with CALR.

6.
Genes Chromosomes Cancer ; 62(3): 139-151, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36412977

RESUMO

Myelodysplastic syndromes (MDS) are hematological malignancies classically defined by the presence of cytopenia(s) and dysmorphic myeloid cells. It is now known that MDS can be preceded by a pre-malignant condition called clonal cytopenia of unknown significance (CCUS), which associates a clonality marker with cytopenia in the absence of criteria of dysplasia. However, to date, it is not clear whether chromosomal abnormalities should be considered in the definition of CCUS or if they carry a prognostic impact in CCUS patients. In this study, we analyzed the clinico-biological features and outcomes of 34 patients who presented with one or more cytopenias, an absence of significant dysplasia, and a presence of a chromosomal abnormality (CA). We named this entity chromosomal abnormality with cytopenia of undetermined significance (CACtUS). We show that these patients are slightly older than MDS patients and that they more frequently presented with normocytic anemia. Most CACtUS patients exhibited only one unbalanced CA. The number and type of mutations were comparable between CACtUS patients and MDS patients. Regardless of the cytogenetic abnormality, the clinicobiological characteristics, overall survival, and risk of progression to high-risk (HR) MDS were similar between CACtUS patients and low-risk MDS patients. Thus, we suggest that CACtUS patients can be considered as HR-CCUS and should receive the follow-up regimen recommended for MDS patients.


Assuntos
Anemia , Transtornos Cromossômicos , Neoplasias Hematológicas , Síndromes Mielodisplásicas , Humanos , Aberrações Cromossômicas , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Mutação
8.
Nat Commun ; 13(1): 6592, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329047

RESUMO

JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Camundongos , Animais , Dissecção Aórtica/patologia , Fenótipo , Mutação , Macrófagos/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/complicações
11.
Clin Cancer Res ; 27(21): 6012-6025, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400415

RESUMO

PURPOSE: AXL has been shown to play a pivotal role in the selective response of FLT3-ITD acute myeloid leukemia (AML) cells to FLT3 tyrosine kinase inhibitors (TKI), particularly within the bone marrow microenvironment. EXPERIMENTAL DESIGN: Herein, we compared the effect of dual FLT3/AXL-TKI gilteritinib with quizartinib through in vitro models mimicking hematopoietic niche conditions, ex vivo in primary AML blasts, and in vivo with dosing regimens allowing plasma concentration close to those used in clinical trials. RESULTS: We observed that gilteritinib maintained a stronger proapoptotic effect in hypoxia and coculture with bone marrow stromal cells compared with quizartinib, linked to a dose-dependent inhibition of AXL phosphorylation. In vivo, use of the MV4-11 cell line with hematopoietic engraftment demonstrated that gilteritinib was more effective than quizartinib at targeting leukemic cells in bone marrow. Finally, FLT3-ITD AML patient-derived xenografts revealed that this effect was particularly reproducible in FLT3-ITD AML with high allelic ratio in primary and secondary xenograft. Moreover, gilteritinib and quizartinib displayed close toxicity profile on normal murine hematopoiesis, particularly at steady state. CONCLUSIONS: Overall, these findings suggest that gilteritinib as a single agent, compared with quizartinib, is more likely to reach leukemic cells in their protective microenvironment, particularly AML clones highly dependent on FLT3-ITD signaling.


Assuntos
Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia , Linhagem Celular Tumoral , Hematopoese , Humanos , Receptor Tirosina Quinase Axl
12.
Blood Adv ; 5(5): 1442-1451, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33666653

RESUMO

We aimed to study the prognostic impact of the mutational landscape in primary and secondary myelofibrosis. The study included 479 patients with myelofibrosis recruited from 24 French Intergroup of Myeloproliferative Neoplasms (FIM) centers. The molecular landscape was studied by high-throughput sequencing of 77 genes. A Bayesian network allowed the identification of genomic groups whose prognostic impact was studied in a multistate model considering transitions from the 3 conditions: myelofibrosis, acute leukemia, and death. Results were validated using an independent, previously published cohort (n = 276). Four genomic groups were identified: patients with TP53 mutation; patients with ≥1 mutation in EZH2, CBL, U2AF1, SRSF2, IDH1, IDH2, NRAS, or KRAS (high-risk group); patients with ASXL1-only mutation (ie, no associated mutation in TP53 or high-risk genes); and other patients. A multistate model found that both TP53 and high-risk groups were associated with leukemic transformation (hazard ratios [HRs] [95% confidence interval], 8.68 [3.32-22.73] and 3.24 [1.58-6.64], respectively) and death from myelofibrosis (HRs, 3.03 [1.66-5.56] and 1.77 [1.18-2.67], respectively). ASXL1-only mutations had no prognostic value that was confirmed in the validation cohort. However, ASXL1 mutations conferred a worse prognosis when associated with a mutation in TP53 or high-risk genes. This study provides a new definition of adverse mutations in myelofibrosis with the addition of TP53, CBL, NRAS, KRAS, and U2AF1 to previously described genes. Furthermore, our results argue that ASXL1 mutations alone cannot be considered detrimental.


Assuntos
Mielofibrose Primária , Teorema de Bayes , Genômica , Humanos , Mutação , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Prognóstico , Proteínas Repressoras/genética
13.
Arch Cardiovasc Dis ; 114(4): 316-324, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33714721

RESUMO

Cardiovascular diseases, particularly atherothrombosis, are the leading cause of death worldwide, but their mechanisms are not yet fully understood. Traditional cardiovascular risk factors have been known for many years, but are not enough to predict individual risk. Clonal haematopoiesis of indeterminate potential (CHIP) has been described recently; it corresponds to the clonal expansion of a population of haematopoietic cells in response to the acquisition of a somatic mutation, without any clinical or biological sign of haematological malignancy. The prevalence of this condition increases with age, reaching 10-20% of the general population aged>70 years. Recent observational studies have shown a link between CHIP and cardiovascular diseases in humans, revealing that CHIP carriers have a higher risk of myocardial infarction, heart failure and severe aortic valve stenosis. The prognosis of these conditions also seems to be altered by the presence of CHIP. Experimental studies have identified that the immune system and inflammation - particularly interleukin-1ß-secreting macrophages - play a critical role in enhancing the cardiovascular consequences of CHIP, through their action on the atherosclerotic plaque and myocardial tissues. We aimed to write an extensive review of what is currently known about CHIP and its cardiovascular consequences, the pathophysiological mechanisms leading to the increased cardiovascular risk and, finally, the expected influence on our daily practice and how we care for patients with CHIP.


Assuntos
Doenças Cardiovasculares/patologia , Hematopoiese Clonal , Células-Tronco Hematopoéticas/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Hematopoiese Clonal/genética , Feminino , Fatores de Risco de Doenças Cardíacas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Medição de Risco , Adulto Jovem
15.
Cancers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872203

RESUMO

Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1ß, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1ß, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1ß and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.

17.
Br J Haematol ; 188(6): 935-944, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31710700

RESUMO

In myeloproliferative neoplasms (MPN), JAK2V617F allele burden measurement has an impact on prognosis that helps in patient monitoring. Less is known about its usefulness in CALR-mutated cases. Additional mutations found by next-generation sequencing have also shown an impact on prognosis that may drive therapeutic choices, especially in myelofibrosis, but few studies focused on CALR-mutated patients. We performed a molecular evaluation combining next-generation sequencing with a myeloid panel and CALR allele burden measurement at diagnosis and during follow-up in a cohort of 45 patients with CALR-mutated essential thrombocythaemia. The bone marrow histology was also blindly reviewed in order to apply the WHO2016 classification. The most frequently mutated gene was TET2 (11/21 mutations). CALR type 1-like patients appear to have a more complex molecular landscape. We found an association between disease progression and CALR allele burden increase during follow-up, independently of additional mutations and WHO2016-reviewed diagnosis. Patients with disease progression at the time of follow-up showed a significant increase in CALR allele burden (+16·7%, P = 0·005) whereas patients without disease progression had a stable allele burden (+3·7%, P = 0·194). This result argues for clinical interest in CALR allele burden monitoring.


Assuntos
Calreticulina/genética , Transtornos Mieloproliferativos/genética , Trombocitose/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Progressão da Doença , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Adulto Jovem
18.
Cancers (Basel) ; 11(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810292

RESUMO

BACKGROUND: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. METHODS: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. RESULTS: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. CONCLUSIONS: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.

19.
Blood ; 134(26): 2383-2387, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31697834

RESUMO

The major weakness of most knock-in JAK2V617F mouse models is the presence of the JAK2 mutation in all rather than in a few hematopoietic stem cells (HSC), such as in human "early-stage" myeloproliferative neoplasms (MPN). Understanding the mechanisms of disease initiation is critical as underscored by the incidence of clonal hematopoiesis of indeterminate potential associated with JAK2V617F. Currently, such studies require competitive transplantation. Here, we report a mouse model obtained by crossing JAK2V617F/WT knock-in mice with PF4iCre transgenic mice. As expected, PF4iCre;JAK2V617F/WT mice developed an early thrombocytosis resulting from the expression of JAK2V617F in the megakaryocytes. However, these mice then developed a polycythemia vera-like phenotype at 10 weeks of age. Using mT/mG reporter mice, we demonstrated that Cre recombination was present in all hematopoietic compartments, including in a low number of HSC. The frequency of mutated cells increased along hematopoietic differentiation mimicking the clonal expansion observed in essential thrombocythemia and polycythemia vera patients. This model thus mimics the HSC compartment observed in early-stage MPN, with a small number of JAK2V617F HSC competing with a majority of JAK2WT HSC. PF4iCre;JAK2V617F/WT mice are a promising tool to investigate the mechanisms that regulate clonal dominance and progression to myelofibrosis.


Assuntos
Modelos Animais de Doenças , Células-Tronco Hematopoéticas/patologia , Janus Quinase 2/genética , Megacariócitos/patologia , Mutação , Transtornos Mieloproliferativos/patologia , Policitemia Vera/patologia , Animais , Diferenciação Celular , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Transtornos Mieloproliferativos/genética , Fenótipo , Policitemia Vera/genética
20.
Haematologica ; 104(10): 2017-2027, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30923103

RESUMO

Internal tandem duplication in Fms-like tyrosine kinase 3 (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML) and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors are promising for targeted therapy. Here, we investigated mechanisms dampening the response to the FLT3 inhibitor quizartinib, which is specific to the hematopoietic niche. Using AML primary samples and cell lines, we demonstrate that convergent signals from the hematopoietic microenvironment drive FLT3-ITD cell resistance to quizartinib through the expression and activation of the tyrosine kinase receptor AXL. Indeed, cytokines sustained phosphorylation of the transcription factor STAT5 in quizartinib-treated cells, which enhanced AXL expression by direct binding of a conserved motif in its genomic sequence. Likewise, hypoxia, another well-known hematopoietic niche hallmark, also enhanced AXL expression. Finally, in a xenograft mouse model, inhibition of AXL significantly increased the response of FLT3-ITD cells to quizartinib exclusively within a bone marrow environment. These data highlight a new bypass mechanism specific to the hematopoietic niche that hampers the response to quizartinib through combined upregulation of AXL activity. Targeting this signaling offers the prospect of a new therapy to eradicate resistant FLT3-ITD leukemic cells hidden within their specific microenvironment, thereby preventing relapses from FLT3-ITD clones.


Assuntos
Benzotiazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Fator de Transcrição STAT5/metabolismo , Microambiente Tumoral , Tirosina Quinase 3 Semelhante a fms/metabolismo , Hipóxia Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT5/genética , Regulação para Cima/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/genética , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA