Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anat Cell Biol ; 56(2): 271-275, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36726235

RESUMO

The abducens nerve (AN; cranial nerve VI) exits the brainstem at the inferior pontine sulcus, pierces the dura of the posterior cranial fossa, passes through the cavernous sinus in close contact to the internal carotid artery (ICA) and traverses the superior orbital fissure to reach the orbit to innervate the lateral rectus muscle. At its exit from the brainstem, the AN includes only axons from lower motor neurons in the abducens nucleus. However, as the AN crosses the ICA it receives a number of branches from the internal carotid sympathetic plexus. The arrangement, neurochemical profile and function of these sympathetic axons running along the AN remain unresolved. Herein, we use gross dissection and microscopic study of hematoxylin and eosin-stained sections and sections with tyrosine hydroxylase immunolabeling. Our results suggest the AN receives multiple bundles of unmyelinated axons that use norepinephrine as a neurotransmitter consistent with postganglionic sympathetic axons.

2.
J Alzheimers Dis ; 91(2): 847-862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36502327

RESUMO

BACKGROUND: Quadruple aberrant hyperphosphorylated tau, amyloid-ß, α-synuclein, and TDP-43 pathology had been documented in 202/203 forensic autopsies in Metropolitan Mexico City ≤40-year-olds with high exposures to ultrafine particulate matter and engineered nanoparticles. Cognition deficits, gait, equilibrium abnormalities, and MRI frontal, temporal, caudate, and cerebellar atrophy are documented in young adults. OBJECTIVE: This study aimed to identify an association between falls, probable Rapid Eye Movement Sleep Behavior Disorder (pRBD), restless leg syndrome (RLS), and insomnia in 2,466 Mexican, college-educated volunteers (32.5±12.4 years). METHODS: The anonymous, online study applied the pRBD and RLS Single-Questions and self-reported night-time sleep duration, excessive daytime sleepiness, insomnia, and falls. RESULTS: Fall risk was strongly associated with pRBD and RLS. Subjects who fell at least once in the last year have an OR = 1.8137 [1.5352, 2.1426] of answering yes to pRBD and/or RLS questions, documented in 29% and 24% of volunteers, respectively. Subjects fell mostly outdoors (12:01 pm to 6:00 pm), 43% complained of early wake up hours, and 35% complained of sleep onset insomnia (EOI). EOI individuals have an OR of 2.5971 [2.1408, 3.1506] of answering yes to the RLS question. CONCLUSION: There is a robust association between falls, pRBD, and RLS, strongly suggesting misfolded proteinopathies involving critical brainstem arousal and motor hubs might play a crucial role. Nanoparticles are likely a significant risk for falls, sleep disorders, insomnia, and neurodegenerative lethal diseases, thus characterizing air particulate pollutants' chemical composition, emission sources, and cumulative exposure concentrations are strongly recommended.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos dos Movimentos , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Humanos , Poluição do Ar/efeitos adversos , Sono , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Adulto Jovem , Adulto
3.
Exp Brain Res ; 240(12): 3217-3235, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271940

RESUMO

The medial nucleus of the trapezoid body (MNTB) is one of the monaural cell groups situated within the superior olivary complex (SOC), a constellation of brainstem nuclei with numerous roles in hearing. Principal MNTB neurons are glycinergic and express the calcium-binding protein, calbindin (CB). The MNTB receives its main glutamatergic, excitatory input from the contralateral cochlear nucleus via the calyx of Held and converts this into glycinergic inhibition directed toward nuclei in the SOC and the ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL). Through this inhibition, the MNTB plays essential roles in localization of sound sources and encoding spectral and temporal features of sound. In rats, very few MNTB neurons project to the inferior colliculus. However, our recent study of SOC projections to the auditory thalamus revealed a substantial number of retrogradely labeled MNTB neurons. This observation led us to examine whether the rat MNTB provides a long-range projection to the medial geniculate body (MGB). We examined this possible projection using retrograde and anterograde tract tracing and immunohistochemistry for CB and the glycine receptor. Our results demonstrate a significant projection to the MGB from the ipsilateral MNTB that does not involve a collateral projection to the inferior colliculus.


Assuntos
Colículos Inferiores , Animais , Ratos , Colículos Inferiores/fisiologia , Vias Auditivas/fisiologia , Núcleos Cerebelares , Tronco Encefálico , Neurônios/metabolismo
4.
Brain Res ; 1793: 148056, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985362

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes several key neuropathological changes and behavioral impairments. In utero exposure to the anti-epileptic valproic acid (VPA) increases risk of an ASD diagnosis in human subjects and timed in utero exposure to VPA is a clinically relevant animal model of ASD. Many human subjects with ASD have cerebellar hypoplasia, fewer Purkinje cells, difficulties with balance, ophthalmic dysfunction and abnormal responses to vestibular stimulation and such vestibular difficulties are likely under reported in ASD. We have recently shown that animals exposed to VPA in utero have fewer neurons in their auditory brainstem, reduced axonal projections to the auditory midbrain and thalamus, reduced expression of the calcium binding protein calbindin (CB) in the brainstem and cerebellum, smaller and occasionally ectopic cerebellar Purkinje cells and ataxia on several motor tasks. Based on these findings, we hypothesized that in utero VPA exposure similarly impacts structure and function of the vestibular brainstem. We investigated this hypothesis using quantitative morphometric analyses, immunohistochemistry for CB, a battery of vestibular challenges, recording of vestibular-evoked myogenic potentials and spontaneous eye movements. Our results indicate that VPA exposure results in fewer neurons in the vestibular nuclei, fewer CB-positive puncta, difficulty on certain motor tasks, longer latency VEMPs and significantly more horizontal eye movements. These findings indicate that the vestibular nuclei are impacted by in utero VPA exposure and provide a basis for further study of vestibular circuits in human cases of ASD.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/metabolismo , Tronco Encefálico/metabolismo , Calbindinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ácido Valproico/metabolismo
5.
Front Integr Neurosci ; 15: 743561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658804

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, poor social skills, and difficulties with communication. Beyond these core signs and symptoms, the majority of subjects with ASD have some degree of auditory and vestibular dysfunction. Dysfunction in these sensory modalities is significant as normal cognitive development depends on an accurate representation of our environment. The hearing difficulties in ASD range from deafness to hypersensitivity and subjects with ASD have abnormal sound-evoked brainstem reflexes and brainstem auditory evoked potentials. Vestibular dysfunction in ASD includes postural instability, gait dysfunction, and impaired gaze. Untreated vestibular dysfunction in children can lead to delayed milestones such as sitting and walking and poor motor coordination later in life. Histopathological studies have revealed that subjects with ASD have significantly fewer neurons in the auditory hindbrain and surviving neurons are smaller and dysmorphic. These findings are consistent with auditory dysfunction. Further, the cerebellum was one of the first brain structures implicated in ASD and studies have revealed loss of Purkinje cells and the presence of ectopic neurons. Together, these studies suggest that normal auditory and vestibular function play major roles in the development of language and social abilities, and dysfunction in these systems may contribute to the core symptoms of ASD. Further, auditory and vestibular dysfunction in children may be overlooked or attributed to other neurodevelopmental disorders. Herein we review the literature on auditory and vestibular dysfunction in ASD. Based on these results we developed a brainstem model of central auditory and vestibular dysfunction in ASD and propose that simple, non-invasive but quantitative testing of hearing and vestibular function be added to newborn screening protocols.

6.
Front Integr Neurosci ; 15: 730439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658803

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by repetitive behaviors, poor social skills, and difficulties with communication and hearing. The hearing deficits in ASD range from deafness to extreme sensitivity to routine environmental sounds. Previous research from our lab has shown drastic hypoplasia in the superior olivary complex (SOC) in both human cases of ASD and in an animal model of autism. However, in our study of the human SOC, we failed to find any changes in the total number of neurons in the ventral nucleus of the trapezoid body (VNTB) or any changes in cell body size or shape. Similarly, in animals prenatally exposed to the antiepileptic valproic acid (VPA), we failed to find any changes in the total number, size or shape of VNTB neurons. Based on these findings, we hypothesized that the neurotransmitter profiles, ascending and descending axonal projections of the VNTB are also preserved in these neurodevelopmental conditions. We investigated this hypothesis using a combination of immunohistochemistry and retrograde tract tracing. We found no difference between control and VPA-exposed animals in the number of VNTB neurons immunoreactive for choline acetyltransferase (ChAT). Additionally, we investigated the ascending projections from the VNTB to both the central nucleus of the inferior colliculus (CNIC) and medial geniculate (MG) and descending projections to the cochlea. Our results indicate no significant differences in the ascending and descending projections from the VNTB between control and VPA-exposed animals despite drastic changes in these projections from surrounding nuclei. These findings provide evidence that certain neuronal populations and circuits may be protected against the effects of neurodevelopmental disorders.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34206224

RESUMO

Quadruple aberrant hyperphosphorylated tau (p-τ), amyloid-ß peptide, alpha-synuclein and TDP-43 brainstem and supratentorial pathology are documented in forensic ≤40y autopsies in Metropolitan Mexico City (MMC), and p-τ is the major aberrant protein. Post-traumatic stress disorder (PTSD) is associated with an elevated risk of subsequent dementia, and rapid eye movement sleep behavior disorder (RBD) is documented in PD, AD, Lewy body dementia and ALS. This study aimed to identify an association between PTSD and potential pRBD in Mexico. An anonymous online survey of 4502 urban college-educated adults, 29.3 ± 10.3 years; MMC, n = 1865; non-MMC, n = 2637, measured PTSD symptoms using the Impact of Event Scale-Revised (IES-R) and pRBD symptoms using the RBD Single-Question. Over 50% of the participants had IES-R scores ≥33 indicating probable PTSD. pRBD was identified in 22.6% of the participants across Mexico and 32.7% in MMC residents with PTSD. MMC subjects with PTSD had an OR 2.6218 [2.5348, 2.7117] of answering yes to the pRBD. PTSD and pRBD were more common in women. This study showed an association between PTSD and pRBD, strengthening the possibility of a connection with misfolded proteinopathies in young urbanites. We need to confirm the RBD diagnosis using an overnight polysomnogram. Mexican women are at high risk for stress and sleep disorders.


Assuntos
Transtorno do Comportamento do Sono REM , alfa-Sinucleína , Adulto , Peptídeos beta-Amiloides , Tronco Encefálico , Proteínas de Ligação a DNA , Feminino , Humanos , México/epidemiologia , Sono , alfa-Sinucleína/metabolismo
8.
Neuroscience ; 468: 75-87, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126187

RESUMO

Localization of sound sources in the environment requires neurons that extract interaural timing differences (ITD) in low-frequency hearing animals from fast and precisely timed converging inputs from both ears. In mammals, this is accomplished by neurons in the medial superior olive (MSO). MSO neurons receive converging excitatory input from both the ipsilateral and contralateral cochlear nuclei and glycinergic, inhibitory input by way of interneurons in the medial and lateral nuclei of the trapezoid body (MNTB and LNTB, respectively). Key features of the ITD circuit are MSO neurons with symmetric dendrites that segregate inputs from the ipsilateral and contralateral ears and preferential distribution of glycinergic inputs on MSO cell bodies. This circuit for ITD is well characterized in gerbils, a mammal with a prominent MSO and a low-frequency hearing range similar to humans. However, the organization of this circuit in the human MSO has not been characterized. This is further complicated by limited understanding of the human LNTB. Nonetheless, we hypothesized that the ITD circuit characterized in laboratory animals is similarly arranged in the human MSO. Herein, we utilized neuron reconstructions and immunohistochemistry to investigate the distribution of glutamatergic and glycinergic inputs onto human MSO neurons. Our results indicate that human MSO neurons have simple, symmetric dendrites and that glycinergic inputs outnumber glutamatergic inputs on MSO cell bodies and proximal dendrites. Together these results suggest that the human MSO utilizes similar circuitry to other mammals with excellent low-frequency hearing.


Assuntos
Vias Auditivas , Complexo Olivar Superior , Estimulação Acústica , Animais , Gerbillinae , Audição , Humanos , Neurônios , Núcleo Olivar
9.
Anat Cell Biol ; 54(2): 285-288, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33850061

RESUMO

The glossopharyngeal nerve (CN IX) provides innervation to the parotid gland, carotid body/sinus, mucosa of the middle ear, tongue and oropharynx and the stylopharyngeus muscle. The vagus nerve provides innervation to the remaining skeletal muscle of the pharynx. CN IX contributes to the pharyngeal plexus and normally provides innervation to the mucosa of the oropharynx. Herein, we describe a previously undescribed variation of CN IX. CN IX was observed to enter the pharyngeal wall but instead of forming terminal branches in the tonsillar fossa, CN IX descended along the posterior wall between the mucosa and pharyngeal constrictors to the esophagus. This unusual branch of CN IX gave rise to numerous branches along the pharynx but did not intermingle with laryngeal branches from the vagus nerve. From this dissection, we developed innervation maps of the pharynx and propose a central miswiring mechanism for this unusual variation.

10.
Exp Brain Res ; 239(2): 381-400, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33200290

RESUMO

Auditory dysfunction, including hypersensitivity and tinnitus, is a common symptom of autism spectrum disorder (ASD). Prenatal exposure to the antiseizure medication valproic acid (VPA) significantly increases the risk of ASD in humans and similar exposure is utilized as an animal model of ASD in rodents. Animals exposed to VPA in utero have abnormal activity in their auditory cortex in response to sounds, fewer neurons, abnormal neuronal morphology, reduced expression of calcium-binding proteins, and reduced ascending projections to the central nucleus of the inferior colliculus. Unfortunately, these previous studies of central auditory circuits neglect the medial geniculate (MG), which serves as an important auditory relay from the midbrain to the auditory cortex. Here, we examine the structure and connectivity of the medial geniculate (MG) in rats prenatally exposed to VPA. Our results indicate that VPA exposure results in significantly smaller and fewer neurons in the ventral and medial nuclei of the MG. Furthermore, injections of the retrograde tract tracer fluorogold (FG) in the MG result in significantly fewer FG+ neurons in the inferior colliculus, superior olivary complex, and ventral cochlear nucleus. Together, we interpret these findings to indicate that VPA exposure results in hypoplasia throughout the auditory circuits and that VPA has a differential impact on some long-range axonal projections from brainstem centers to the thalamus. Together, our findings support the widespread impact of VPA on neurons and sensory circuits in the developing brain.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Colículos Inferiores , Animais , Vias Auditivas , Modelos Animais de Doenças , Ratos
11.
Hear Res ; 393: 107974, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32540615

RESUMO

Auditory dysfunction is a common symptom of autism spectrum disorder (ASD) and ranges from decreased acuity to hypersensitivity where routine sounds may result in panic or anxiety. Irrespective of altered sensitivity, there is often additional difficulty of listening in background noise. Previous studies of post-mortem brain specimens from subjects with ASD have revealed consistent dysmorphology in the superior olivary complex (SOC). The medial superior olive (MSO) is the largest and most prominent nucleus in the human SOC. Our morphological studies have shown that in subjects with ASD, there are significantly fewer neurons in the MSO and surviving neurons are smaller, more round and have abnormal dendritic orientations. Based on these findings, we hypothesize that the SOC in subjects with ASD not only includes fewer neurons but that these nuclei occupy significantly less brain volume and demonstrate abnormal nuclear contours. We investigated this hypothesis by making 3D volume renderings of the SOC nuclei using Amira software. Subjects in this study include three neurotypical and seven age-matched (ages 2-11 years of age) children with ASD. Our 3D reconstructions and volume measurements of the SOC nuclei emphasize the drastic alterations in the size, volume and organization of the human SOC in ASD.


Assuntos
Transtorno do Espectro Autista , Complexo Olivar Superior , Percepção Auditiva , Criança , Pré-Escolar , Humanos , Imageamento Tridimensional , Neurônios , Núcleo Olivar
12.
Environ Res ; 183: 109137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32006765

RESUMO

Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) youth have life time exposures to PM2.5 and O3 above standards. We focused on MMC residents ≤30 years and reviewed 134 consecutive autopsies of subjects age 20.03 ± 6.38 y (range 11 months to 30 y), the staging of Htau and ß amyloid, the lifetime cumulative PM2.5 (CPM 2.5) and the impact of the Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD. We also reviewed the results of the Montreal Cognitive Assessment (MoCA) and the brainstem auditory evoked potentials (BAEPs) in clinically healthy young cohorts. Mobile sources, particularly from non-regulated diesel vehicles dominate the MMC pollutant emissions exposing the population to PM2.5 concentrations above WHO and EPA standards. Iron-rich,magnetic, highly oxidative, combustion and friction-derived nanoparticles (CFDNPs) are measured in the brain of every MMC resident. Progressive development of Alzheimer starts in childhood and in 99.25% of 134 consecutive autopsies ≤30 years we can stage the disease and its progression; 66% of ≤30 years urbanites have cognitive impairment and involvement of the brainstem is reflected by auditory central dysfunction in every subject studied. The average age for dementia using MoCA is 20.6 ± 3.4 y. APOE4 vs 3 carriers have 1.26 higher odds of committing suicide. PM2.5 and CFDNPs play a key role in the development of neuroinflammation and neurodegeneration in young urbanites. A serious health crisis is in progress with social, educational, judicial, economic and overall negative health impact for 25 million residents. Understanding the neural circuitry associated with the earliest cognitive and behavioral manifestations of AD is needed. Air pollution control should be prioritised-including the regulation of diesel vehicles- and the first two decades of life ought to be targeted for neuroprotective interventions. Defining paediatric environmental, nutritional, metabolic and genetic risk factor interactions is a multidisciplinary task of paramount importance to prevent Alzheimer's disease. Current and future generations are at risk.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença de Alzheimer , Adolescente , Poluentes Atmosféricos/toxicidade , Doença de Alzheimer/epidemiologia , Criança , Cidades , Humanos , México/epidemiologia , Material Particulado
13.
Exp Brain Res ; 238(3): 551-563, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980847

RESUMO

Prenatal exposure to the antiepileptic valproic acid (VPA) is associated with an increased risk of autism spectrum disorder (ASD) in humans. Accordingly, in utero exposure to VPA is a validated and biologically relevant animal model of ASD. The majority of individuals with ASD exhibit some degree of auditory dysfunction, ranging from deafness to hypersensitivity. Animals exposed to VPA in utero have abnormal tonotopic maps and responses in the cerebral cortex and hyperactivation, hypoplasia, abnormal neuronal morphology and reduced calcium binding protein expression throughout the auditory brainstem nuclei. Further, our previous work suggests that GABAergic neuronal populations may be more severely impacted by in utero VPA exposure. However, the axonal projection patterns of brainstem nuclei to the inferior colliculus (IC) have not been investigated in VPA-exposed animals. Herein, we use stereotaxic injections of the retrograde tracer Fast Blue into the central nucleus of the IC (CNIC) and examine the proportions of retrogradely labeled neurons in the nuclei of the lateral lemniscus, superior olivary complex and cochlear nuclei. Our results indicate that not only are there fewer neurons in the auditory brainstem after VPA exposure, but also that fewer neurons are retrogradely labeled from the CNIC. Together, our results indicate that in utero VPA exposure may result in altered patterns of input to the auditory midbrain.


Assuntos
Vias Auditivas/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Colículos Inferiores/metabolismo , Ácido Valproico/farmacologia , Animais , Vias Auditivas/fisiologia , Transtorno do Espectro Autista/tratamento farmacológico , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Feminino , Colículos Inferiores/efeitos dos fármacos , Mesencéfalo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Ácido Valproico/metabolismo
14.
J Alzheimers Dis ; 70(4): 1275-1286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31322574

RESUMO

A major impediment in early diagnosis of Alzheimer's disease (AD) is the lack of robust non-invasive biomarkers of early brain dysfunction. Metropolitan Mexico City (MMC) children and young adults show hyperphosphorylated tau, amyloid-ß, and α-synuclein within auditory and vestibular nuclei and marked dysmorphology in the ventral cochlear nucleus and superior olivary complex. Based on early involvement of auditory brainstem centers, we believe brainstem auditory evoked potentials can provide early AD biomarkers in MMC young residents. We measured brainstem auditory evoked potentials in MMC clinically healthy children (8.52±3.3 years) and adults (21.08±3.0 years, 42.48±8.5 years, and 71.2±6.4 years) compared to clean air controls (6.5±0.7 years) and used multivariate analysis adjusting for age, gender, and residency. MMC children had decreased latency to wave I, delays in waves III and V, and longer latencies for interwave intervals, consistent with delayed central conduction time of brainstem neural transmission. In sharp contrast, young adults have significantly shortened interwave intervals I-III and I-V. By the 5th decade, wave V and interval I-V were significantly shorter, while the elderly cohort had significant delay in mean latencies and interwave intervals. Compensatory plasticity, increased auditory gain, cochlear synaptopathy, neuroinflammation, and AD continuum likely play a role in the evolving distinct auditory pathology in megacity urbanites. Understanding auditory central and peripheral dysfunction in the AD continuum evolving and progressing in pediatric and young adult populations may shed light on the complex mechanisms of AD development and help identify strong noninvasive biomarkers. AD evolving from childhood in air pollution environments ought to be preventable.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , População Urbana/tendências , Adolescente , Adulto , Idoso , Doença de Alzheimer/fisiopatologia , Criança , Feminino , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
15.
Hear Res ; 377: 234-246, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31003035

RESUMO

The inferior colliculus (IC) is a major relay station for both ascending and descending auditory pathways. The IC is divided into three major regions, the external cortex (ECIC), the dorsal cortex (DCIC) and the central nucleus of the inferior colliculus (CNIC). While the ECIC and DCIC receive many non-auditory inputs, the CNIC receives predominantly auditory input ascending within the lateral lemniscus and descending input from the cerebral cortex. Recent work in animal models emphasizes the complexity of the CNIC and provides evidence for multiple ascending informational streams reaching this nucleus. Despite an abundance of research on the CNIC in laboratory animals, the microscopic anatomy and neurochemistry of the human CNIC is poorly understood. Herein, we utilize a combination of gross morphology, myelin staining, Nissl staining, histochemistry, immunohistochemistry and immunofluorescence to characterize the human CNIC. Our results indicate that the human CNIC occupies a volume of approximately 22.4 mm3 and includes over 420,000 neurons. The human CNIC is dominated by round/oval neurons arranged with their long axis parallel to fibrodendritic lamina. Additionally, the vast majority of CNIC neurons are associated with a perineuronal net, there is an abundance of tyrosine hydroxylase immunoreactive axons and puncta and neurons immunoreactive for glutamic acid decarboxylase. These results are largely consistent with observations in laboratory animals.


Assuntos
Vias Auditivas/citologia , Colículos Inferiores/citologia , Idoso , Idoso de 80 Anos ou mais , Vias Auditivas/química , Biomarcadores/análise , Feminino , Imunofluorescência , Glutamato Descarboxilase/análise , Humanos , Colículos Inferiores/química , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Bainha de Mielina/química , Coloração e Rotulagem , Tirosina 3-Mono-Oxigenase/análise
16.
J Alzheimers Dis ; 67(4): 1147-1155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30741678

RESUMO

Alzheimer's disease (AD) is a biological construct defined by abnormal deposits of hyperphosphorylated tau and amyloid-ß. The 2050 projection for AD in the USA is 14 million. There is a strong association between AD, air pollution, and traffic. Early diagnosis is imperative for intervention in the initial disease stages. Hearing and, specifically, the ability to encode complex sounds are impaired in AD. Nuclei in the auditory brainstem appear to be sensitive to neurodevelopmental and neurodegenerative disorders. Specifically, sustained exposure to air pollution is harmful to the brainstem; young residents of Metropolitan Mexico City (MMC) exposed to fine particulate matter and combustion-derived nanoparticles develop AD pathology in infancy. MMC clinically healthy children and teens have significant central delays in brainstem auditory evoked potentials (BAEPs). Herein, we review evidence that the auditory pathway is a key site of AD early pathology associated with air pollution and is significantly involved in AD patients. We strongly suggest electrophysiological screening, including BAEPs, be employed to screen individuals for early delays and to monitor progressive decline in patients diagnosed with mild cognitive impairment and AD. Understanding auditory dysfunction in early AD in pediatric and young adult populations may clarify mechanisms of disease progression. Air pollution is a risk factor for the development of AD and as the number of Americans with AD continues to grow without a cure, we need to focus on preventable, early causes of this fatal disease and intervene appropriately.


Assuntos
Poluição do Ar/efeitos adversos , Doença de Alzheimer , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Humanos , Fatores de Risco
17.
Neuroscience ; 396: 79-93, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458220

RESUMO

Prenatal exposure to the antiepileptic valproic acid (VPA) is associated with an increased risk of autism spectrum disorder (ASD) in humans and is used as an animal model of ASD. The majority of individuals with ASD exhibit adverse reactions to sensory stimuli and auditory dysfunction. Previous studies of animals exposed to VPA reveal abnormal neuronal responses to sound and mapping of sound frequency in the cerebral cortex and hyperactivation, hypoplasia and abnormal neuronal morphology in the cochlear nuclei (CN) and superior olivary complex (SOC). Herein, we examine the neuronal populations in the lateral lemniscus and inferior colliculus in animals exposed in utero to VPA. We used a combination of morphometric techniques, histochemistry and immunofluorescence to examine the nuclei of the lateral lemniscus (NLL) and the central nucleus of the inferior colliculus (CNIC). We found that the VPA exposure resulted in larger neurons in the CNIC and the dorsal nucleus of the lateral lemniscus (DNLL). However, we found that there were significantly fewer neurons throughout all nuclei examined in the auditory brainstem of VPA-exposed animals. Additionally, we found significantly fewer calbindin-immunopositive neurons in the DNLL. VPA exposure had no impact on the proportions of perineuronal nets in the NLL or CNIC. Finally, consistent with our observations in the CN and SOC, VPA exposure resulted in fewer dopaminergic terminals in the CNIC. Together, these results indicate that in utero VPA exposure significantly impacts structure and function of nearly the entire central auditory pathway.


Assuntos
Vias Auditivas/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ácido Valproico/efeitos adversos , Animais , Transtorno do Espectro Autista/patologia , Calbindinas/metabolismo , Contagem de Células , Neurônios Dopaminérgicos/patologia , Feminino , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/patologia , Masculino , Neurônios/metabolismo , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA