Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurol Disord Drug Targets ; 23(3): 353-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37287291

RESUMO

The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doenças Neurodegenerativas , Humanos , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Substâncias Protetoras
2.
Sci Total Environ ; 884: 163616, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086998

RESUMO

Fluoride (F) is usually treated as a hazardous material, and F-caused public health problem has attracted global attention. Previous studies demonstrate that interleukin-17A (IL-17A) plays a crucial role in F-elicited autoimmune orchitis and self-recovery reverses F-induced testicular toxicity to some extent, but these basic mechanisms remain unclear. Thus, we established a 180 d F exposure model of wild type (WT) mice and IL-17A knockout mice (C57BL/6 J background), and 60 d & 120 d self-recovery model based on F exposure model of WT mice, and used various techniques like qRT-PCR, western blot, immunohistochemistry and ELISA to further explore the mechanism of F-induced autoimmune reaction, the role of IL-17A in it and the reversibility of F-caused toxicity in testis. The results indicated that F exposure for 180 d caused the decreased sperm quality, the damaged testis histopathology, the enhanced mRNA and protein expression levels of inflammatory cytokines, the changes of autoantibody such as the appearance and increased content of anti-testicular autoantibodies in sera and the autoantibody deposition in testis, the alterations of autoimmune related genes containing the decreased mRNA and protein expressions of AIRE and FOXP3 with an increase of MHCII, and the reduced protein expressions of CTLA4, and the activation of IL-17A signaling cascade like the elevated mRNA and protein expressions of IL-17A, Act1, NF-κB, AP-1 and CEBPß, and the increased protein expressions of IL-17RC, with a decrease of IκBα. After IL-17A knockout, 29 of 35 F-induced changes were alleviated. In two self-recovery models, all F-caused differences except fluorine concentration in femur were gradually restored in a time-dependent manner. This study concluded that IL-17A knockout or self-recovery attenuated F-induced testicular injury and decrease of sperm quality through alleviating autoimmune reaction which was involved with the activation of IL-17A pathway, the damage of self-tolerance and the enhancement of antigen presentation.


Assuntos
Fluoretos , Interleucina-17 , Masculino , Camundongos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Testículo/metabolismo , Camundongos Endogâmicos C57BL , Sêmen , Autoanticorpos , RNA Mensageiro
3.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1557-1572, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097067

RESUMO

Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.


Assuntos
Colestase , Lesão Pulmonar , Pneumonia , Ratos , Animais , Taurina/farmacologia , Taurina/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Estresse Oxidativo , Ductos Biliares/cirurgia , Colestase/tratamento farmacológico , Colestase/metabolismo , Ligadura/efeitos adversos , Antioxidantes/uso terapêutico , Cirrose Hepática/patologia , Fibrose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pneumonia/patologia , Fígado
4.
Anim Sci J ; 93(1): e13769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127314

RESUMO

The composition of amino acid and fatty acid has a vital function on meat quality and animal health. However, the underlying mechanism of amino acid and fatty acid metabolism in sheep during different grazing periods is still unclear. In this study, a total of 12 sheep were employed in different grazing periods. Our results showed that the composition of amino acids and fatty acids in muscle and adipose tissues was significantly altered between dry grass (DG) period and green grass (GG) period. Changes in the activities of the metabolism-related enzymes including BCKD, BCAT2, ACC, SCD, HSL, GSK3ß, p-GSK3ß, and FABP4 were observed in muscle and adipose during different grazing periods. In addition, the mRNA expression levels of ACC, FAS, SCD, HSL, LPL, and DGAT1 in muscle and adipose tissue were changed markedly in different grazing periods. Furthermore, the expression levels of mTOR and ß-catenin/PPARγ/C/EBPα pathway-related proteins were predominantly altered in muscle and adipose among DG and GG. Taken together, all investigations simplified the process of amino acid and fatty acid metabolism disorders caused by different grazing periods, and the mTOR and ß-catenin/PPARγ/C/EBPα play the essential role in this process, which provided an underlying mechanism of metabolism and meat quality.


Assuntos
Aminoácidos , Ácidos Graxos , Tecido Adiposo/metabolismo , Aminoácidos/análise , Animais , Ácidos Graxos/análise , Glicogênio Sintase Quinase 3 beta , Músculos/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Ovinos , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/metabolismo
5.
Sci Total Environ ; 804: 150184, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517333

RESUMO

As an environmental toxicant, the damage of fluoride to the body has attracted global attention. Because liver is an essential organ for fluoride accumulation and damage. Our previous studies revealed fluoride-induced hepatic injury through interleukin 17A (IL-17A) pathway, but the underlying cellular mechanism remains unclear. Hence, this research explored the mechanism of IL-17A pathway and mitophagy in fluoride-induced liver injury through the use of the mice fluorosis model, IL-17A addition fluorosis cell model, IL-17A gene knockout mice fluorosis model, flow cytometry, immunohistochemistry, fluorescence double staining, ELISA, western blotting, and other techniques. The results showed that fluoride reduced the bodyweight and liver coefficient, increased the bone fluoride content, the aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GDH) levels, caspase 8 and caspase 9 activities, and induced liver morphology and ultrastructure damage. Furthermore, the protein expression levels of IL-17A pathway key proteins, IL-17A, IL-17R, and Act1 were increased, but IκB was decreased after fluoride exposure. In addition, fluoride exposure elevated the mitochondrial depolarization percent, the mitochondria damage, the fluorescent spots of mitophagy, and the LC3II/LC3I protein relative expression level. To further verify the role of the IL-17A pathway in fluoride-induced hepatocyte mitochondrial damage and mitophagy disorder, the IL-17A was added and knocked out in cells of animals. The results showed that the addition of IL-17A aggravated fluoride-induced liver morphology and functional damage, activation of the IL-17A pathway, mitochondrial injury, and mitophagy, but the IL-17A knockout mitigated fluoride-induced changes. These results suggested that fluoride exposure induced mitochondrial damage and mitophagy through the IL-17A pathway in hepatocytes.


Assuntos
Fluoretos , Mitofagia , Animais , Fluoretos/toxicidade , Hepatócitos , Interleucina-17 , Fígado , Camundongos
7.
Clin Exp Hepatol ; 8(3): 195-210, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36685263

RESUMO

Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34909675

RESUMO

Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 â€‹mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 â€‹mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 â€‹mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 â€‹mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.

9.
Ecotoxicol Environ Saf ; 226: 112851, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619480

RESUMO

Long-term excessive intake of fluoride (F) can cause osseous and non-osseous damage. The kidney is the main fluoride excretion organ of the body. This study aimed to explore whether dietary calcium (Ca) supplementation can alleviate kidney damage caused by fluorosis and to further investigate the effects of Ca on the mitigation mechanism of renal cell apoptosis triggered by F. We evaluated the histopathological structure, renal function indicators, and gene and protein expression levels of death receptor-mediated apoptosis pathways in Sprague Dawley (SD) rats treated with sodium fluoride (NaF) and/or calcium carbonate (CaCO3) for 120 days. The results showed that 100 mg/L NaF induced kidney histopathological injury and apoptosis, increased the concentrations of Creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN), potassium (K), phosphorus (P) and F (p < 0.05), and decrease the level of serum magnesium (Mg) (p < 0.05). Moreover, NaF increased the mRNA and protein expression levels of Fas cell surface death receptor (FAS), tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Caspase 8, Caspase 3 and poly ADP-ribose polymerase (PARP) (p < 0.01), which finally activated the death receptor pathway. Inversely, Ca supplementation reversed the decrease of CRE, BUN, UA, F and P levels induced by F, alleviated histopathological damage and apoptosis, and reduced the gene and protein expression levels of death receptor pathway-related markers. In conclusion, 1% Ca alleviates F-induced kidney apoptosis through FAS/FASL, TNFR/TNF, DR5/TRAIL signaling pathways.


Assuntos
Cálcio , Fluoretos , Animais , Apoptose , Cálcio/metabolismo , Cálcio da Dieta , Caspase 8 , Proteína Ligante Fas/genética , Fluoretos/toxicidade , Rim/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Toxicol Res (Camb) ; 10(4): 911-927, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34484683

RESUMO

Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.

11.
Toxicol Lett ; 349: 12-29, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089816

RESUMO

The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- ß, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.


Assuntos
Anti-Inflamatórios/farmacologia , Colestase/tratamento farmacológico , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Sulfassalazina/farmacologia , Animais , Colestase/metabolismo , Colestase/patologia , Ducto Colédoco/cirurgia , Modelos Animais de Doenças , Regulação para Baixo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Ligadura , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
13.
Toxicol In Vitro ; 72: 105074, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33352257

RESUMO

Arsenic (As), a potent toxicant, is known to be a hepatotoxicant. Although As induced liver apoptosis and autophagy, the relationship between apoptosis and autophagy of hepatocytes caused by As remains largely unknown. 3-methyladenine (3-MA) and rapamycin can inhibit and promote autophagy of AML-12 cells, respectively. Hence, in this study, AML-12 cells were treated with different concentrations (0, 2, 4, 6, 8, 10 and 12 µmol/L) of As2O3, and 5 mmol/L 3-MA or 100 nmol/L rapamycin were applied to distinguish the effect of autophagy on apoptosis in AML-12. Results showed that exposure to As induced cell apoptosis and autophagy, which were mediated by the significantly altered expression levels of autophagy markers (mTOR, LC3, PI3K and P62), and apoptosis markers (Bcl-2 and caspase-3). Further analysis indicated that a certain dosage of 3-MA and rapamycin decreased apoptosis and the caspase-3 expression, which suggested that As-induced autophagy regulated AML-12 cells apoptosis through the expressions of PI3K, mTOR, P62 and Bcl-2.


Assuntos
Apoptose/efeitos dos fármacos , Trióxido de Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Sirolimo/farmacologia
14.
Clin Exp Hepatol ; 7(4): 377-389, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35402721

RESUMO

Aim of the study: Cholestasis is the stoppage of bile flow that primarily affects liver function. On the other hand, kidneys are also severely influenced during cholestasis. Cholestasis-induced kidney injury is known as cholemic nephropathy (CN). There is no precise pharmacological option in CN. Previous studies revealed that oxidative stress plays a crucial role in the pathogenesis of CN. On the other hand, the positive effects of pentoxifylline (PTX) against renal injury with different etiologies have been frequently reported. In the current study, the potential nephroprotective role of PTX in cholestasis-induced renal injury is investigated. Material and methods: Bile duct ligated (BDL) rats were treated with PTX (10, 50, and 100 mg/kg), and renal markers of oxidative stress, urine level of inflammatory cytokines, as well as renal histopathological alterations were monitored. Results: Significant changes in oxidative stress markers were detected in the BDL group. On the other hand, it was found that PTX (10, 50, and 100 mg/kg) significantly ameliorated cholestasis-induced oxidative stress in renal tissue. Renal histopathological changes, including interstitial inflammation, tubular atrophy, fibrosis, and cast formation, were detected in the BDL rats. Moreover, urine pro-inflammatory cytokines [interleukin (IL)-1, IL-9, IL-18, tumor necrosis factor α (TNF-α), and interferon γ (INF-γ)] were significantly increased in the cholestatic animals. PTX (10, 50, and 100 mg/kg, 14 days) significantly ameliorated renal histopathological alterations and urine levels of inflammatory cytokines. Conclusions: These data indicate a potential nephroprotective role for PTX in cholestasis. The effects of PTX on oxidative stress parameters and the inflammatory response could play a primary role in its renoprotective mechanisms.

15.
Biol Trace Elem Res ; 199(5): 1919-1928, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32710350

RESUMO

For this study, we investigate more deeply the effect calcium (Ca) develops on the mechanism underlying fluoride-triggered osteocyte apoptosis. We detected the morphology of osteocytes by HE staining, mitochondrial microstructure by using the transmission electron microscope, and the biochemical indexes related to bone metabolism and the expression of apoptosis-related genes. These results showed that NaF brought out the reduced osteocytes and ruptured mitochondrial outer membrane, with a significantly increased StrACP activity by 10.414 IU/L at the 4th week (P < 0.05), markedly upregulating the mRNA expression of Bax, Cyto-C, Apaf-1, caspase-7, ROCK-1, BMP-2, and BGP (P < 0.01), as well as caspase-6 (P < 0.05), while downregulating Bcl-2 by 61.3% (P < 0.01). Through immunohistochemical analysis, we also found that NaF notably increased the protein expression of ROCK-1 (P < 0.05) and Cyto-C, BMP-2, and BGP (P < 0.01), suggesting that NaF triggered the activation of the mitochondrial apoptotic pathway and Rho/ROCK signaling pathway. Nevertheless, 1% Ca supplementation in diet notably enhanced the mRNA expression of Bcl-2 by 39.3% (P < 0.01), thus blocking the increment of the expression of mitochondrial apoptotic pathway-related genes and ROCK-1. Meanwhile, Ca could attenuate the StrACP activity by 10.741 IU/L at the 4th week (P < 0.05) and protect the integrity of the mitochondrial outer membrane. These findings strongly suggest that 1% Ca abated the mitochondrial apoptosis pathway by increasing the anti-apoptotic gene Bcl-2 expression, and effectively inhibited the hyper-activation of ROCK-1, dually protecting the structural integrity of the mitochondrial outer membrane and maintaining normal cellular metabolic function.


Assuntos
Cálcio , Intoxicação por Flúor , Animais , Apoptose , Mitocôndrias , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína X Associada a bcl-2
16.
Sci Total Environ ; 742: 140533, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721723

RESUMO

Increasing investigations suggest that fluoride (F) exposure was associated with gastrointestinal diseases, but related literatures were still largely insufficient and the underlying mechanisms have not been fully elucidated. Moreover, previous study in our lab reported F toxicity has the reversible tendency, but it still needs to be further explored. To address this issue, we established a 90 days F exposure and 15 days & 30 days self-recovery mice model, including control and three F groups (25, 50 and 100 mg/L sodium fluoride (NaF)) in each period. The results revealed that after 90 days F exposure, histological structure and ultrastructure of small intestine were markedly disrupted; the value of villus height to crypt depth, and expressions of tight junctions related mRNA and proteins were significantly decreased; intestinal permeability, pro-inflammatory cytokines and pyroptosis related mRNA and proteins were notably increased in duodenum, jejunum and ileum. However, intriguingly, after 30 days recovery period, indices in F groups almost all have recovered towards normalcy. Collectively, this study demonstrated that F exposure could impair the structure and epithelial barrier function of small intestine, leading to the intestinal inflammation, and pyroptosis may contribute to this damage; Furthermore, F toxicity on small intestine is reversible, and could be restored when off the F exposure environment for a certain period of time. Additionally, among the three regions of small intestine, duodenum seems more vulnerable to F exposure than jejunum and ileum.


Assuntos
Fluoretos , Piroptose , Animais , Inflamação , Intestino Delgado , Jejuno , Camundongos
17.
Sci Total Environ ; 734: 139233, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32460071

RESUMO

Arsenic (As) poisoning and its potential reproductive functional lesions are a global environmental concern. Recent studies shown that spermiogenesis tends to be a major target process in arsenic-induced male infertility, however, the underlying mechanisms are not fully illuminated. In the present study, 32 fertility related indices including sperm motility, dynamic acrosome formation and sperm flagellum during spermiogenesis in testes were evaluated in adult male mice treated with 0, 0.2, 2, and 20 ppm As2O3 via drinking water for 180 consecutive days. The results showed that out of 32 indices, 11, 25, and 29 indicators were changed statistically by 0.2-, 2-, and 20- ppm As2O3 treatment compared to the controls (0 ppm As2O3), respectively, which reveals a significant dose-dependent relationship. For details, sperm motilities were significantly decreased by 18.85%, 32.47% and 29.53% in three As2O3 treatment groups compared to the control group. Meanwhile, the ultra-structures of acrosome formation and sperm flagellum in testes have been altered by chronic arsenic exposure. Furthermore, arsenic decreased the mRNA expressions of 11 out of 13 genes associated with acrosome biosynthesis and 11 out of 12 genes related to flagellum formation in testes, particularly, down-regulated DPY19L2, AKAP3, AKAP4, CFAP44 and SPAG16 were further confirmed at the protein levels by western blotting. Taken together, chronic arsenic exposure declines male fertility by disorganizing dynamic acrosome and flagellum formation in testes. Especially, DPY19L2, AKAP3, AKAP4, CFAP44, and SPAG16 maybe the potential targets in this process. These results may offer not only a new insight to the mechanism of arsenic-induced male reproductive toxicity, but also provide a clue for the diagnosis and therapy of arseniasis.


Assuntos
Acrossomo , Proteínas de Ancoragem à Quinase A , Animais , Arsênio , Flagelos , Masculino , Proteínas de Membrana , Camundongos , Motilidade dos Espermatozoides , Espermatogênese , Espermatozoides
18.
Toxicol Lett ; 326: 83-98, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112876

RESUMO

Arsenic (As) has been implicated in causing reproductive toxicity, but the precise cellular pathway through which the As toxicity in mature F1- male mice hypothalamic-pituitary- gonadal- sperm (HPG-S) axis is induced has not well been documented. Hence, parental mice were treated to As2O3 (0, 0.2, 2, and 20 ppm in deionized water) from five weeks before mating until weaning, and the male pups from weaning to maturity. Afterward, the markers of oxidative stress, mitochondrial impairment, and autophagy as fundamental mechanisms of cytotoxicity and organ injury were evaluated. Higher As2O3 doses (2 and 20 ppm) were a potent inducer of oxidative stress, mitochondrial dysfunction, and autophagy in HPG-S axis. Concomitant with a dose-dependent increase in the number of MDC-labeled autophagic vacuoles in the HPG axis, an adverse dose-dependent effect was observed on the mean body weight, litter size, organ coefficient, and spermatogenesis. Transmission electron microscopy also revealed more autophagosomes at high As2O3 dosage. Concomitant with a dose-dependent increment in gene expression of PI3K, Atg5, Atg12, as well as protein expression of Beclin1, LC3- I, II, P62 in HPG axis tissues and Atg12 in the pituitary; a dose-dependent decrease in mTOR gene expression was recorded in the HPG tissues of mature F1-males. These observations provide direct evidence that oxidative stress-induced mitochondrial impairments and autophagic cell death, through AMPK/TSC/mTOR and LC3 related pathways, are fundamental mechanisms for As2O3- induced toxicity on the reproductive system in mature male mice offspring.


Assuntos
Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Animais , Masculino , Camundongos
19.
J Hazard Mater ; 391: 122227, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044640

RESUMO

Arsenic poisoning and induced potential lesion is a global concern. However, the exact mechanisms underlying its toxicity especially in male reproductive system still remain unclear. Hence, this study aimed to explore the roles of mTOR and Beclin1-Vps34/PI3K complex during As-induced-toxicity using Rapamycin (mTOR inhibitor), Beclin1 siRNA and 3-methyladenine (3-MA, Vps34/PI3K inhibitor) in testicular stromal cells. For this, mouse testis Leydig Tumor Cell lines (MLTC-1) were challenged with As2O3 (0, 3, 6 and 9 µM) exposure for 24 hs. Lyso-Tracker Red and Monodansylcadaverine (MDC) staining results depicted a significant accumulation of autophagosomes in MLTC-1 cells exposed to arsenic. Meanwhile, arsenic treatment up-regulated autophagic markers including LC3, Atg7, Beclin1 and Vps34 expressions, mTOR downstream autophagy related genes and the Beclin1-Vps34/PI3K complex associated members. Furthermore, silencing of Beclin1, and inhibition of Vps34/PI3K and mTOR altered the arsenic-induced autophagosomes formation. However, p62, the substrate protein of autophagy, was also up-regulated by arsenic administration independent on Beclin1-Vps34/PI3K complex. Altogether, our results revealed that arsenic exposure induced autophagosomes formation via regulation of the Beclin1-Vps34/PI3K complex and mTOR pathway; the blockage of autophagosomes degradation maybe due to impaired function of lysosomes. Thus, this study provides a novel mechanistic approach with respect to As-induced male reproductive toxicity.


Assuntos
Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Fosfatidilinositol 3-Quinases , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
20.
Chemosphere ; 246: 125791, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927375

RESUMO

The gut microbial compositions are easily affected by the environmental chemicals like arsenic (As) leading to dysbiosis. The dysbiosis of gut microbiome has associated with numerous diseases; among which cancer is one of the major diseases. The meticulous mechanism underlying As- altered gut microbiome, Nucleotide domine containing protein 2 (NOD2) and how altered gut microbiome disturbs the intestinal homeostasis to regulate colon cancer markers remains unclear. For this, one hundred twenty 8-week old age male mice were divided into two exposure periods (3 and 6 months), and each exposure group animals were further divided into four groups as control (received only distilled H2O), low (0.15 mg As2O3/L), medium (1.5 mg As2O3/L) and high (15 mg As2O3/L) dose (each group containing 15 mice) administrated for 3 and 6 months. The results showed that As exposure highly altered gut microbiome with a significant depletion in NOD2 in contrast to control groups. Moreover, the dendritic cells (CD11a, CD103, CX3CR1) and macrophages (F4/80) were significantly increased by As exposure. Interestingly, increased trend of inflammatory cytokines (TNF-α, IFN-γ, IL-17) and depleted anti-inflammatory cytokines (IL-10) was observed in As exposed mice. Furthermore, the colon cancer markers ß-catenin has increased while APC was arrested by As both in 3 and 6 months treated animals. Many studies reported that As altered gut microbial compositions, in this study, our results suggested that altered gut microbiome indirectly regulates colon cancer marker through immune system destruction mediated by inflammatory cytokines.


Assuntos
Arsênio/toxicidade , Poluentes Ambientais/toxicidade , Microbioma Gastrointestinal/imunologia , Animais , Arsênio/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo , Citocinas/metabolismo , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Intestinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA