Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20230016, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37634530

RESUMO

Germanium nitride, having cubic spinel structure, γ-Ge3N4, is a wide band-gap semiconductor with a large exciton binding energy that exhibits high hardness, elastic moduli and elevated thermal stability up to approximately 700°C. Experimental data on its bulk and shear moduli (B0 and G0, respectively) are strongly limited, inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering B0 values but consistently predicted G0 much higher than the so far available experimental value. Here, we examined the elasticity of polycrystalline γ-Ge3N4, densified applying high pressures and temperatures, using the techniques of laser ultrasonics (LU) and Brillouin light scattering (BLS) and compared with our extended first-principles calculations. From the LU measurements, we obtained its longitudinal- and Rayleigh wave sound velocities and, taking into account the sample porosity, derived B0 = 322(44) GPa and G0 = 188(7) GPa for the dense polycrystalline γ-Ge3N4. While our calculations underestimated B0 by approximately 17%, most of the predicted G0 matched well with our experimental value. Combining the LU- and BLS data and taking into account the elastic anisotropy, we determined the refractive index of γ-Ge3N4 in the visible range of light to be n = 2.4, similarly high as that of diamond or GaN, and matching our calculated value. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

2.
Sci Adv ; 8(44): eabo1036, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322665

RESUMO

Large igneous provinces (LIPs) resulted from intraplate magmatic events mobilizing volumes of magma up to several million cubic kilometers. LIPs and lavas with deep mantle sources have compositions ranging from komatiites found in Archean greenstone belts to basalts and picrites in Phanerozoic flood basalt and recent oceanic islands. In this study, we identify the mantle conditions appropriate to each type of lava based on an experimental study of the melting of pyrolite. The depth of the mantle source decreases from 600 to 700 km for the oldest komatiites to 100 to 300 km for picrites and basalts, and the extent of mantle melting ranges from 10 to 50%. We develop a geodynamical model that explains the origin of the hot mantle plumes capable of generating these melting P-T conditions. Within a superadiabatic temperature gradient persisting in the deep mantle, the ascent of hot mantle plumes creates excess temperatures up to 250 to 300 K by adiabatic decompression.

3.
Sci Rep ; 11(1): 18014, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504176

RESUMO

Slab surface temperature is one of the key parameters that incur first-order changes in subduction dynamics. However, the current thermal models are based on empirical thermal parameters and do not accurately capture the complex pressure-temperature paths of the subducting slab, prompting significant uncertainties on slab temperature estimations. In this study, we investigate whether the dehydration-melting of glaucophane can be used to benchmark the temperature in the slab. We observe that dehydration and melting of glaucophane occur at relatively low temperatures compared to the principal hydrous phases in the slab and produce highly conductive Na-rich melt. The electrical properties of glaucophane and its dehydration products are notably different from the hydrous minerals and silicate melts. Hence, we conclude that the thermodynamic instability of glaucophane in the slab provides a unique petrological criterion for tracking temperature in the present-day subduction systems through magnetotelluric profiles.

4.
Sci Rep ; 11(1): 3745, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580092

RESUMO

The dehydration and decarbonation in the subducting slab are intricately related and the knowledge of the physical properties of the resulting C-H-O fluid is crucial to interpret the petrological, geochemical, and geophysical processes associated with subduction zones. In this study, we investigate the C-H-O fluid released during the progressive devolatilization of carbonate-bearing serpentine-polymorph chrysotile, with in situ electrical conductivity measurements at high pressures and temperatures. The C-H-O fluid produced by carbonated chrysotile exhibits high electrical conductivity compared to carbon-free aqueous fluids and can be an excellent indicator of the migration of carbon in subduction zones. The crystallization of diamond and graphite indicates that the oxidized C-H-O fluids are responsible for the recycling of carbon in the wedge mantle. The carbonate and chrysotile bearing assemblages stabilize dolomite during the devolatilization process. This unique dolomite forming mechanism in chrysotile in subduction slabs may facilitate the transport of carbon into the deep mantle.

5.
Nat Commun ; 11(1): 548, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992697

RESUMO

Thermochemical heterogeneities detected today in the Earth's mantle could arise from ongoing partial melting in different mantle regions. A major open question, however, is the level of chemical stratification inherited from an early magma-ocean (MO) solidification. Here we show that the MO crystallized homogeneously in the deep mantle, but with chemical fractionation at depths around 1000 km and in the upper mantle. Our arguments are based on accurate measurements of the viscosity of melts with forsterite, enstatite and diopside compositions up to ~30 GPa and more than 3000 K at synchrotron X-ray facilities. Fractional solidification would induce the formation of a bridgmanite-enriched layer at ~1000 km depth. This layer may have resisted to mantle mixing by convection and cause the reported viscosity peak and anomalous dynamic impedance. On the other hand, fractional solidification in the upper mantle would have favored the formation of the first crust.

6.
Sci Adv ; 4(3): e1701876, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546237

RESUMO

Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10-1, up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.

7.
Sci Rep ; 8(1): 1372, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358663

RESUMO

Topaz is an aluminosilicate mineral phase stable in the hydrothermally altered pegmatitic rocks and also in subducted sedimentary lithologies. In nature, topaz often exhibits solid solution between fluorine and hydrous end members. We investigated elasticity of naturally occurring single crystal topaz (Al2SiO4F1.42(OH)0.58) using Resonant Ultrasound Spectroscopy. We also explored the temperature dependence of the full elastic constant tensor. We find that among the various minerals stable in the Al2O3-SiO2-H2O ternary system, topaz exhibits moderate elastic anisotropy. As a function of temperature, the sound velocity of topaz decreases with [Formula: see text] and [Formula: see text] being -3.10 and -2.30 × 10-4 km/s/K. The elasticity and sound velocity of topaz also vary as a function of OH and F content. The effect of composition ([Formula: see text]) on the velocity is equally important as that of the effect of temperature. We also note that the Debye temperature ([Formula: see text]) of topaz at room temperature condition is 910 K and decreases at higher temperature. The Debye temperature shows positive correlation with density of the mineral phases in the Al2O3-SiO2-H2O ternary system.

8.
Sci Adv ; 2(5): e1501631, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386526

RESUMO

Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.


Assuntos
Cloretos/química , Desidratação , Condutividade Elétrica , Sedimentos Geológicos , Modelos Teóricos
9.
Sci Adv ; 2(5): e1600246, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386548

RESUMO

The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (V P) and shear (V S) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high V P/V S values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere.


Assuntos
Sedimentos Geológicos , Geologia , Modelos Teóricos
10.
Proc Natl Acad Sci U S A ; 108(44): 17901-4, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22021444

RESUMO

The amount of heat flowing from Earth's core critically determines the thermo-chemical evolution of both the core and the lower mantle. Consisting primarily of a polycrystalline aggregate of silicate perovskite and ferropericlase, the thermal boundary layer at the very base of Earth's lower mantle regulates the heat flow from the core, so that the thermal conductivity (k) of these mineral phases controls the amount of heat entering the lowermost mantle. Here we report measurements of the lattice thermal conductivity of pure, Al-, and Fe-bearing MgSiO(3) perovskite at 26 GPa up to 1,073 K, and of ferropericlase containing 0, 5, and 20% Fe, at 8 and 14 GPa up to 1,273 K. We find the incorporation of these elements in silicate perovskite and ferropericlase to result in a ∼50% decrease of lattice thermal conductivity relative to the end member compositions. A model of thermal conductivity constrained from our results indicates that a peridotitic mantle would have k = 9.1 ± 1.2 W/m K at the top of the thermal boundary layer and k = 8.4 ± 1.2 W/m K at its base. These values translate into a heat flux of 11.0 ± 1.4 terawatts (TW) from Earth's core, a range of values consistent with a variety of geophysical estimates.

11.
Nature ; 451(7176): 326-9, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18202656

RESUMO

The Earth's mantle transition zone could potentially store a large amount of water, as the minerals wadsleyite and ringwoodite incorporate a significant amount of water in their crystal structure. The water content in the transition zone can be estimated from the electrical conductivities of hydrous wadsleyite and ringwoodite, although such estimates depend on accurate knowledge of the two conduction mechanisms in these minerals (small polaron and proton conductions), which early studies have failed to distinguish between. Here we report the electrical conductivity of these two minerals obtained by high-pressure multi-anvil experiments. We found that the small polaron conductions of these minerals are substantially lower than previously estimated. The contributions of proton conduction are small at temperatures corresponding to the mantle transition zone and the conductivity of wadsleyite is considerably lower than that of ringwoodite for both mechanisms. The dry model mantle shows considerable conductivity jumps associated with the olivine-wadsleyite, wadsleyite-ringwoodite and post-spinel transitions. Such a dry model explains well the currently available conductivity-depth profiles obtained from geoelectromagnetic studies. We therefore conclude that there is no need to introduce a significant amount of water in the mantle transition to satisfy electrical conductivity constraints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA