Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 84(3): 214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049893

RESUMO

Fermions are subject to the Pauli Exclusion Principle (PEP), which is grounded on the spin-statistics theorem and, hence, related to the very same structure of the underlying symmetries. The VIP-2 (VIolation of Pauli exclusion principle - 2) experiment has been performing extreme sensitivity tests of the PEP, up to its current and final configuration, exploiting several experimental setups designed to study different theoretical models of PEP violation, looking for a faint signal of physics Beyond the Standard Model.A current is introduced in the copper target to bring new electrons into the system and, hence, fulfill the requirements of the Messiah-Greenberg Super-Selection rule. The searched spin-statistics violating signal corresponds to X-rays emitted when the new electrons perform atomic transitions to the already filled fundamental level of copper. This work analyzes the set of the VIP-2 data corresponding to a test run of 68 days in a current modulated regime alternating no current with current data-taking in short periods (50 s each), instead the usual alternating months-long data-taking of each of these two phases. We propose an analysis method to improve the experiment's sensitivity: a spectral analysis constraint with the Discrete Fourier Transformation of the data. Compared to the spectrum-only analysis, about a factor of 1.5 of improvement to the limit for the probability of PEP violation for electrons was obtained.

2.
Phys Rev Lett ; 132(25): 250203, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996255

RESUMO

In this work the spontaneous electromagnetic radiation from atomic systems, induced by dynamical wave-function collapse, is investigated in the x-ray domain. Strong departures are evidenced with respect to the simple cases considered until now in the literature, in which the emission is either perfectly coherent (protons in the same nuclei) or incoherent (electrons). In this low-energy regime the spontaneous radiation rate strongly depends on the atomic species under investigation and, for the first time, is found to depend on the specific collapse model.

3.
ACS Nano ; 17(21): 21105-21115, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889165

RESUMO

We employ a first-principles computational workflow to screen for optically accessible, high-spin point defects in wide band gap, two-dimensional (2D) crystals. Starting from an initial set of 5388 point defects, comprising both native and extrinsic, single and double defects in ten previously synthesized 2D host materials, we identify 596 defects with a triplet ground state. For these defects, we calculate the defect formation energy, hyperfine (HF) coupling, and zero-field splitting (ZFS) tensors. For 39 triplet transitions exhibiting particularly low Huang-Rhys factors, we calculate the full photoluminescence (PL) spectrum. Our approach reveals many spin defects with narrow PL line shapes and emission frequencies covering a broad spectral range. Most of the defects are hosted in hexagonal BN (hBN), which we ascribe to its high stiffness, but some are also found in MgI2, MoS2, MgBr2 and CaI2. As specific examples, we propose the defects vSMoS0 and NiSMoS0 in MoS2 as interesting candidates with potential applications to magnetic field sensors and quantum information technology.

4.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687783

RESUMO

Kaonic atom X-ray spectroscopy is a consolidated technique for investigations on the physics of strong kaon-nucleus/nucleon interaction. Several experiments have been conducted regarding the measurement of soft X-ray emission (<20 keV) from light kaonic atoms (hydrogen, deuterium, and helium). Currently, there have been new research activities within the framework of the SIDDHARTA-2 experiment and EXCALIBUR proposal focusing on performing precise and accurate measurements of hard X-rays (>20 keV) from intermediate kaonic atoms (carbon, aluminum, and sulfur). In this context, we investigated cadmium-zinc-telluride (CdZnTe or CZT) detectors, which have recently demonstrated high-resolution capabilities for hard X-ray and gamma-ray detection. A demonstrator prototype based on a new cadmium-zinc-telluride quasi-hemispherical detector and custom digital pulse processing electronics was developed. The detector covered a detection area of 1 cm2 with a single readout channel and interesting room-temperature performance with energy resolution of 4.4% (2.6 keV), 3% (3.7 keV), and 1.4% (9.3 keV) FWHM at 59.5, 122.1, and 662 keV, respectively. The results from X-ray measurements at the DAΦNE collider at the INFN National Laboratories of Frascati (Italy) are also presented with particular attention to the effects and rejection of electromagnetic and hadronic background.

5.
Entropy (Basel) ; 25(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36832661

RESUMO

Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model-the strength λ and the correlation length rC-and have led, so far, to the exclusion of regions of the admissible (λ-rC) parameters space. We developed a novel approach to disentangle the λ and rC probability density functions, which discloses a more profound statistical insight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA