Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38537630

RESUMO

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Assuntos
Diferenciação Celular , Miofibroblastos , Animais , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Transdução de Sinais , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Intestinos/citologia , Músculo Liso/metabolismo , Músculo Liso/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor Notch3/metabolismo , Receptor Notch3/genética , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(5): e2317418121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252830

RESUMO

Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell type- and ovulation stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.


Assuntos
Ascomicetos , Ovário , Feminino , Animais , Camundongos , Ovulação , Folículo Ovariano , Reprodução , Células da Granulosa
3.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36712064

RESUMO

Intestinal smooth muscles are the workhorse of the digestive system. Inside the millions of finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic vessel, called the lacteal, sending fats into the blood circulation for energy production. Despite this vital function, how villus smooth muscles form, how they assemble alongside lacteals, and how they repair throughout life remain unknown. Here we combine single-cell RNA sequencing of the mouse intestine with quantitative lineage tracing to reveal the mechanisms of formation and differentiation of villus smooth muscle cells. Within the highly regenerative villus, we uncover a local hierarchy of subepithelial fibroblast progenitors that progress to become mature smooth muscle fibers, via an intermediate contractile myofibroblast-like phenotype. This continuum persists in the adult intestine as the major source of renewal of villus smooth muscle cells during adult life. We further found that the NOTCH3-DLL4 signaling axis governs the assembly of villus smooth muscles alongside their adjacent lacteal, and we show that this is necessary for gut absorptive function. Overall, our data shed light on the genesis of a poorly defined class of intestinal smooth muscle and pave the way for new opportunities to accelerate recovery of digestive function by stimulating muscle repair.

4.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662215

RESUMO

Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell-type- and ovulation-stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified new molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.

5.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993646

RESUMO

Calcium is a critical signaling molecule in many cell types including immune cells. The calcium-release activated calcium channels (CRAC) responsible for store-operated calcium entry (SOCE) in immune cells are gated by STIM family members functioning as sensors of Ca2+ store content in the endoplasmic reticulum. We investigated the effect of SOCE blocker BTP2 on human peripheral blood mononuclear cells (PBMC) stimulated with the mitogen phytohemagglutinin (PHA). We performed RNA sequencing (RNA-seq) to query gene expression at the whole transcriptome level and identified genes differentially expressed between PBMC activated with PHA and PBMC activated with PHA in the presence of BTP2. Among the differentially expressed genes, we prioritized genes encoding immunoregulatory proteins for validation using preamplification enhanced real time quantitative PCR assays. We performed multiparameter flow cytometry and validated by single cell analysis that BTP2 inhibits cell surface expression CD25 at the protein level. BTP2 reduced significantly PHA-induced increase in the abundance of mRNAs encoding proinflammatory proteins. Surprisingly, BTP2 did not reduce significantly PHA-induced increase in the abundance of mRNAs encoding anti-inflammatory proteins. Collectively, the molecular signature elicited by BTP2 in activated normal human PBMC appears to be tipped towards tolerance and away from inflammation.

6.
Nat Biotechnol ; 41(4): 513-520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36329320

RESUMO

Spatial transcriptomics reveals the spatial context of gene expression, but current methods are limited to assaying polyadenylated (A-tailed) RNA transcripts. Here we demonstrate that enzymatic in situ polyadenylation of RNA enables detection of the full spectrum of RNAs, expanding the scope of sequencing-based spatial transcriptomics to the total transcriptome. We demonstrate that our spatial total RNA-sequencing (STRS) approach captures coding RNAs, noncoding RNAs and viral RNAs. We apply STRS to study skeletal muscle regeneration and viral-induced myocarditis. Our analyses reveal the spatial patterns of noncoding RNA expression with near-cellular resolution, identify spatially defined expression of noncoding transcripts in skeletal muscle regeneration and highlight host transcriptional responses associated with local viral RNA abundance. STRS requires adding only one step to the widely used Visium spatial total RNA-sequencing protocol from 10x Genomics, and thus could be easily adopted to enable new insights into spatial gene regulation and biology.


Assuntos
Poliadenilação , Transcriptoma , Transcriptoma/genética , Poliadenilação/genética , RNA Mensageiro/genética , Perfilação da Expressão Gênica/métodos , RNA Viral/genética
7.
Nat Cardiovasc Res ; 1(10): 946-960, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36970396

RESUMO

A significant fraction of sudden death in children and young adults is due to viral myocarditis, an inflammatory disease of the heart. In this study, by using integrated single-cell and spatial transcriptomics, we created a high-resolution, spatially resolved transcriptome map of reovirus-induced myocarditis in neonatal mouse hearts. We assayed hearts collected at three timepoints after infection and studied the temporal, spatial and cellular heterogeneity of host-virus interactions. We further assayed the intestine, the primary site of reovirus infection, to establish a full chronology of molecular events that ultimately lead to myocarditis. We found that inflamed endothelial cells recruit cytotoxic T cells and undergo pyroptosis in the myocarditic tissue. Analyses of spatially restricted gene expression in myocarditic regions and the border zone identified immune-mediated cell-type-specific injury and stress responses. Overall, we observed a complex network of cellular phenotypes and spatially restricted cell-cell interactions associated with reovirus-induced myocarditis in neonatal mice.

8.
Commun Biol ; 4(1): 1280, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773081

RESUMO

Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro-adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation, and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.


Assuntos
Músculo Esquelético/fisiologia , Regeneração , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica , Membro Posterior/fisiologia , Camundongos , RNA Citoplasmático Pequeno/análise , RNA Nuclear Pequeno/análise , Análise de Célula Única
9.
Nat Commun ; 12(1): 2158, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846360

RESUMO

Conventional scRNA-seq expression analyses rely on the availability of a high quality genome annotation. Yet, as we show here with scRNA-seq experiments and analyses spanning human, mouse, chicken, mole rat, lemur and sea urchin, genome annotations are often incomplete, in particular for organisms that are not routinely studied. To overcome this hurdle, we created a scRNA-seq analysis routine that recovers biologically relevant transcriptional activity beyond the scope of the best available genome annotation by performing scRNA-seq analysis on any region in the genome for which transcriptional products are detected. Our tool generates a single-cell expression matrix for all transcriptionally active regions (TARs), performs single-cell TAR expression analysis to identify biologically significant TARs, and then annotates TARs using gene homology analysis. This procedure uses single-cell expression analyses as a filter to direct annotation efforts to biologically significant transcripts and thereby uncovers biology to which scRNA-seq would otherwise be in the dark.


Assuntos
Anotação de Sequência Molecular , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica , Animais , Embrião de Galinha , Regulação da Expressão Gênica , Marcadores Genéticos , Genoma , Coração/embriologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
10.
Nat Commun ; 12(1): 1771, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741943

RESUMO

Single-cell RNA sequencing is a powerful tool to study developmental biology but does not preserve spatial information about tissue morphology and cellular interactions. Here, we combine single-cell and spatial transcriptomics with algorithms for data integration to study the development of the chicken heart from the early to late four-chambered heart stage. We create a census of the diverse cellular lineages in developing hearts, their spatial organization, and their interactions during development. Spatial mapping of differentiation transitions in cardiac lineages defines transcriptional differences between epithelial and mesenchymal cells within the epicardial lineage. Using spatially resolved expression analysis, we identify anatomically restricted expression programs, including expression of genes implicated in congenital heart disease. Last, we discover a persistent enrichment of the small, secreted peptide, thymosin beta-4, throughout coronary vascular development. Overall, our study identifies an intricate interplay between cellular differentiation and morphogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Morfogênese/genética , Miocárdio/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Galinha , Galinhas , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Miocárdio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA