Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 250: 116067, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301542

RESUMO

Microbial fuel cells (MFCs) are an emerging technology that holds promise for renewable energy production and the mitigation of environmental challenges. This research paper introduces a single-compartment MFC reactor that utilizes transparent conducting oxides (TCOs), such as fluorine-doped tin oxide (FTO) and indium tin oxides (ITO), as the working electrodes. The effectiveness of MFCs based on FTO and ITO was evaluated by characterizing the transparent electrode and examining its performance during biofilm cultivation. Additionally, the optical properties of the biofilm grown directly on these electrodes were investigated using LEDs as a light source. The impressive average current density of 200 µA cm-2 over 100 days demonstrates the efficiency of the see-through electrodes in bioenergy extraction. The correlation between spectroscopic and microscopic analyses substantiates the feasibility of employing transparent electrodes for accurate quantification of biofilm thickness, with an initial accuracy of ±10 µm in the initial cycle, ±22 µm in the subsequent cycle, and a maximum of ±31 µm after seven days of growth. This innovative approach holds great potential for advancing our understanding of MFCs and their application in environmentally friendly energy generation and optical-based monitoring.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Compostos de Estanho , Óxidos , Biofilmes , Eletrodos
2.
ACS Omega ; 9(1): 1454-1462, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38239287

RESUMO

In this work, simple and sensitive detection of dengue virus serotype-3 (DENV-3) antigen was accomplished by a one-dimensional (1D) HKUST-1-functionalized electrochemical sensor. 1D HKUST-1 was synthesized via a coprecipitation method using triethanolamine (TEOA) as pH modulator and structure-directing agent. The structure, morphology, and sensing performance of the HKUST-1-decorated carbon electrode were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). We found that 40 wt% TEOA transforms the octahedron HKUST-1 to the nanorods while maintaining its crystal structure and providing chemical stability. The 1D HKUST-1-decorated carbon electrode successfully detects the antigen in the range of 0.001-10 ng/mL with a detection limit of 0.932 pg/mL. The immunosensor also exhibits remarkable performance in analyzing the antigen in human serum and showed recovery as high as ∼98% with excellent selectivity and reproducibility.

3.
ACS Omega ; 6(47): 31477-31484, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34869974

RESUMO

A rapid, simple, and sensitive voltammetric sensor has been fabricated to determine Rhodamine B (RhB), a textile coloring agent. Silver nanoparticles (AgNPs) were synthesized by the chemical reduction method of silver nitrate and sodium citrate. Graphene nanoplatelets (GPLs) and AgNPs were drop-casted on the surface of a working electrode of a screen-printed carbon electrode (SPCE), forming the SPCE-GPLs/AgNPs samples. Scanning electron microscopy-energy dispersive X-ray and cyclic voltammetry confirmed the altered surface of the SPCE. The square wave voltammetry was used for the electrochemical determination of RhB. The SPCE-GPLs/AgNPs demonstrated electrochemical responses to detect RhB with a linear range of 2-100 µM, and the limit of detection was 1.94 µM. The SPCE-GPLs/AgNPs demonstrated a selective detection of RhB in the presence of common interfering compounds present in the food samples, including sucrose and monosodium glutamate. Furthermore, the sensor presented good reproducibility as well as repeatability in the detection of RhB. When the sensor was used to determine RhB in an actual food sample, similar results were shown as suggested by UV-vis spectroscopy analysis. Hence, the fabricated sensor can be applied for the detection of RhB in food samples.

4.
RSC Adv ; 12(2): 743-752, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425090

RESUMO

The foremost objective of this work is to prepare a novel electrochemical sensor-based screen-printed carbon electrode made of zinc oxide nanoparticles/molecularly imprinted polymer (SPCE-ZnONPs/MIP) and investigate its characteristics to detect sodium dodecyl sulfate (SDS). The MIP that is polyglutamic acid (PGA) film was synthesized via in situ electro-polymerization. The SDS's recognition site was left on the surface of the PGA film after extraction using the cyclic voltammetry (CV) technique, facilitating the specific detection of SDS. Moreover, the ZnONPs (∼71 nm, polydispersity index of 0.138) were synthesized and effectively combined with the MIP by a drop-casting method, enhancing the current response. The surface of the prepared SPCE-ZnONPs/MIP was characterized by scanning electron microscopy and energy dispersive X-ray. Besides, the electrochemical performance of the SPCE-ZnONPs/MIP was also studied through CV and differential pulse voltammetry (DPV) techniques. As an outstanding result, it is observed that the current response of SPCE-ZnONPs/MIP for detection of SDS remarkably increased almost four times higher from 0.009 mA to 0.041 mA in comparison with bare SPCE. More importantly, the proposed SPCE-ZnONPs/MIP exhibited an excellent selectivity (in the presence of interfering molecules of Ca2+, Pb2+, as well as sodium dodecylbenzene sulfonate (SDBS)), sensitivity, reproducibility, and repeatability. Since the modified sensor offers portability, it is suitable for in situ environment and cosmetic monitoring.

5.
Biosens Bioelectron ; 168: 112571, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892119

RESUMO

Forms of lead (Pb) have been insidiously invading human life for thousands of years without obvious signs of their considerable danger to human health. Blood lead level (BLL) is the routine measure used for diagnosing the degree of lead intoxication, although it is unclear whether there is any safe range of BLL. To develop a practical detection tool for living organisms, we engineered a genetically encoded fluorescence resonance energy transfer (FRET)-based Pb2+ biosensor, 'Met-lead 1.44 M1', with excellent performance. Met-lead 1.44 M1 has an apparent dissociation constant (Kd) of 25.97 nM, a detection limit (LOD) of 10 nM (2.0 ppb/0.2 µg/dL), and an enhancement dynamic ratio of nearly ~ 5-fold upon Pb2+ binding. The 10 nM sensitivity of Met-lead 1.44 M1 is five times below the World Health Organization-permitted level of lead in tap water (10 ppb; WHO, 2017), and fifteen times lower than the maximum BLL for children (3 µg/dL). We deployed Met-lead 1.44 M1 to measure Pb2+ concentrations in different living models, including two general human cell lines and one specific line, induced pluripotent stem cell (iPSC)-derived cardiomyocytes, as well as in widely used model species in plant (Arabidopsis thaliana) and animal (Drosophila melanogaster) research. Our results suggest that this new biosensor is suitable for lead toxicological research in vitro and in vivo, and will pave the way toward potential applications for both low BLL measures and rapid detection of environmental lead in its divalent form.


Assuntos
Técnicas Biossensoriais , Chumbo , Animais , Drosophila melanogaster , Transferência Ressonante de Energia de Fluorescência , Chumbo/toxicidade
6.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204388

RESUMO

The harmful impact of the heavy metal lead on human health has been known for years. However, materials that contain lead remain in the environment. Measuring the blood lead level (BLL) is the only way to officially evaluate the degree of exposure to lead. The so-called "safe value" of the BLL seems to unreliably represent the secure threshold for children. In general, lead's underlying toxicological mechanism remains unclear and needs to be elucidated. Therefore, we developed a novel genetically encoded fluorescence resonance energy transfer (FRET)-based lead biosensor, Met-lead, and applied it to transgenic Drosophila to perform further investigations. We combined Met-lead with the UAS-GAL4 system to the sensor protein specifically expressed within certain regions of fly brains. Using a suitable imaging platform, including a fast epifluorescent or confocal laser-scanning/two-photon microscope with high resolution, we recorded the changes in lead content inside fly brains ex vivo and in vivo and at different life stages. The blood-brain barrier was found to play an important role in the protection of neurons in the brain against damage due to the heavy metal lead, either through food or microinjection into the abdomen. Met-lead has the potential to be a powerful tool for the sensing of lead within living organisms by employing either a fast epi-FRET microscope or high-resolution brain imaging.


Assuntos
Técnicas Biossensoriais , Drosophila melanogaster/química , Chumbo/isolamento & purificação , Metais Pesados/isolamento & purificação , Animais , Chumbo/química , Metais Pesados/química
7.
J Biomed Mater Res A ; 104(4): 842-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26650774

RESUMO

Human osteosarcoma cells MG-63 were cultured on anodically etched titania nanotubes (TiO2 NT), with diameters ranging from 40-100 nm, to study the correlations between cell proliferation and adhesion on the 2.5 dimensional (2.5D) extracellular matrix (ECM). Unlike other reports, mostly based on mouse stem cells, and 2D cell culture, our studies indicate that the 2.5D NT promote higher proliferation and activity, but less 2D adhesion. Proliferation of the MG-63 cells was significantly higher in the NTs, the best being the 70 nm diameter sample, compared to planar titania (control). This is consistent with previous studies. However, cellular adhesion was stronger on TiO2 NT with increasing diameter, and highest on the control as obtained from shear stress measurement, paxilin imaging, and western blot measurements probing focal adhesion kinase, p130 CAS, and extracellular-regulated kinase, in addition to cell morphology imaging by fluorescence microscopy. We provide direct videography of cell migration, and cell speed data indicating faster filopodial activity on the TiO2 NT surfaces having lower adhesion. This evidence was not available previously. The NT matrices promote cells with smaller surface area, because of less 2D stretching. In contrast, on comparatively planar 2D-like surfaces uniaxial stretching of the cell body with strong anchoring of the filopodia, resulted in larger cell surface area, and demonstrated stronger adhesion. The difference in the results, with those previously published, may be generally attributed to, among others, the use of mouse stem cells (human osteosarcoma used here), and unannealed as-grown TiO2 NTs used previously (annealed ECMs used here).


Assuntos
Materiais Biocompatíveis/química , Nanotubos/química , Osteoblastos/citologia , Titânio/química , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Nanotubos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA