Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607149

RESUMO

Owing to the growing concerns about the dwindling fossil fuel reserves, increasing energy demand, and climate emergency, it is imperative to develop and deploy sustainable energy technologies to ensure future energy supply and to transition to the net-zero world. In this context, there is great potential in the biorefinery concept for supplying drop in biofuels in the form of biodiesel. Biodiesel as a fuel can certainly bridge the gap where electrification or the use of hydrogen is not feasible, for instance, in heavy vehicles and in the farm and marine transportation sectors. However, the biodiesel industry also generates a large amount of crude glycerol as the by-product. Due to the presence of several impurities, crude glycerol may not be a suitable feedstock for all high-value products derived from glycerol, but it fits well with glycerol esterification for producing glycerol acetins, which have numerous applications. This review critically looks at the processes using nanostructured solid/liquid acid catalysts for glycerol esterification, including the economic viability of the scale-up. The homogeneous catalysts reviewed herein include mineral acids and Brønsted acidic ionic liquids, such as SO3H-functionalized and heteropoly acid based ionic liquids. The heterogeneous catalysts reviewed herein include solid acid catalysts such as metal oxides, ion-exchange resins, zeolites, and supported heteropoly acid-based catalysts. Furthermore, the techno-economic analysis studies have shown the process to be highly profitable, confirming the viability of glycerol esterification as a potential tool for economic value addition to the biorefinery industry.

2.
Ind Eng Chem Res ; 62(45): 19095-19103, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020789

RESUMO

Glycerol acetins (mono-, di-, and tri) are produced via esterification with acetic acid. The acetins are commercially important industrial chemicals including their application as fuel additives, thus significant to environmental sustainability and economic viability of the biorefinery industry. Glycerol esterification with acetic acid was studied using partial tin exchanged tungstophosphoric acid supported on montmorillonite K-10 as catalysts. Partially exchanging the H+ ion of DTP with Sn (x = 1) increased the acidity of the catalyst and showed an increase in the catalytic activity as compared to the DTP/K-10 catalyst. A series of tin exchanged tungstophosphoric acid (20% w/w) supported on montmorillonite K-10 clay (Snx-DTP/K-10, where x = 0.5-1.5) were synthesized and thoroughly characterized by using BET, XRD, FT-IR, UV-vis, and titration techniques. Among various catalysts, Sn1-DTP/K-10 was found to be the most active catalyst for glycerol esterification. Effects of different reaction parameters were studied and optimized to get high yields of glycerol triacetin. A suitable kinetic model of the reaction was fitted, and the Langmuir-Hinshelwood (L-H) dual-site model was able to describe the experimental data with high agreement between the experimental and calculated results. The prepared catalyst could be recycled at least four times without significant loss of activity. The overall process is green and environment friendly.

3.
Ind Eng Chem Res ; 62(23): 9201-9210, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37333489

RESUMO

Glycerol is a valuable feedstock, produced in biorefineries as a byproduct of biodiesel production. Esterification of glycerol with acetic acid yields a mixture of mono-, di-, and triacetins. The acetins are commercially important value-added products with a wide range of industrial applications as fuel additives and fine chemicals. Esterification of glycerol to acetins substantially increases the environmental sustainability and economic viability of the biorefinery concept. Among the acetins, diacetin (DA) and triacetin (TA) are considered high-energy-density fuel additives. Herein, we have studied the economic feasibility of a facility producing DA and TA by a two-stage process using 100,000 tons of glycerol per year using Aspen Plus. The capital costs were estimated by Aspen Process Economic Analyzer software. The analysis indicates that the capital costs are 71 M$, while the operating costs are 303 M$/year. The gross profit is 60.5 M$/year, while the NPV of the project is 235 M$ with a payback period of 1.7 years. Sensitivity analysis has indicated that the product price has the most impact on the NPV.

4.
ACS Sustain Chem Eng ; 11(22): 8337-8349, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37292450

RESUMO

Sugarcane bagasse (SCB) is a significant agricultural residue generated by sugar mills based on sugarcane crop. Valorizing carbohydrate-rich SCB provides an opportunity to improve the profitability of sugar mills with simultaneous production of value-added chemicals, such as 2,3-butanediol (BDO). BDO is a prospective platform chemical with multitude of applications and huge derivative potential. This work presents the techno-economic and profitability analysis for fermentative production of BDO utilizing 96 MT of SCB per day. The study considers plant operation in five scenarios representing the biorefinery annexed to a sugar mill, centralized and decentralized units, and conversion of only xylose or total carbohydrates of SCB. Based on the analysis, the net unit production cost of BDO in the different scenarios ranged from 1.13 to 2.28 US$/kg, while the minimum selling price varied from 1.86 to 3.99 US$/kg. Use of the hemicellulose fraction alone was shown to result in an economically viable plant; however, this was dependent on the condition that the plant would be annexed to a sugar mill which could supply utilities and the feedstock free of cost. A standalone facility where the feedstock and utilities were procured was predicted to be economically feasible with a net present value of about 72 million US$, when both hemicellulose and cellulose fractions of SCB were utilized for BDO production. Sensitivity analysis was also conducted to highlight some key parameters affecting plant economics.

5.
ACS Org Inorg Au ; 3(1): 27-34, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748078

RESUMO

The manufacture of high-value products from biomass derived platform chemicals is becoming an integral part of the biorefinery industry. In this study, we demonstrate a green catalytic process using solvent free conditions for the synthesis of hydroxymethylfurfural (HMF) levulinate from HMF and levulinic acid (LA) over tin exchanged tungstophosphoric acid (DTP) supported on K-10 (montmorillonite K-10 clay) as the catalyst. The structural properties of solid acid catalysts were characterized by using XRD, FT-IR, UV-vis, titration, and SEM techniques. Partial exchange of the H+ of DTP with Sn (x = 1) resulted in enhanced acidity of the catalyst and showed an increase in the catalytic activity as compared to the unsubstituted DTP/K-10 as the catalyst. The effects of different reaction parameters were studied and optimized to get high yields of HMF levulinate. The kinetic model was developed by considering the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism, and the activation energy was calculated to be 41.2 kJ mol-1. The prepared catalysts were easily recycled up to four times without any noticeable loss of activity, and hot filtration test indicated the heterogeneous nature of the catalytic activity. The overall process is environmentally benign and suitable for easy scale up.

6.
RSC Adv ; 13(9): 5619-5626, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36798744

RESUMO

The formation of interstitial PdC x nanoparticles (NPs) is investigated through DFT calculations. Insights on the mechanisms of carbidisation are obtained whilst the material's behaviour under conditions of increasing C-concentration is examined. Incorporation of C atoms in the Pd octahedral interstitial sites is occurring through the [111] facet with an activation energy barrier of 19.3-35.7 kJ mol-1 whilst migration through the [100] facet corresponds to higher activation energy barriers of 124.5-127.4 kJ mol-1. Furthermore, interstitial-type diffusion shows that C will preferentially migrate and reside at the octahedral interstitial sites in the subsurface region with limited mobility towards the core of the NP. For low C-concentrations, migration from the surface into the interstitial sites of the NPs is thermodynamically favored, resulting in the formation of interstitial carbide. Carbidisation reaction energies are exothermic up to 11-14% of C-concentration and slightly vary depending on the shape of the structure. The reaction mechanisms turn to endothermic for higher concentration levels showing that C will preferentially reside on the surface making the interstitial carbide formation unfavorable. As experimentally observed, our simulations confirm that there is a maximum concentration of C in Pd carbide NPs opening the way for further computational investigations on the activity of Pd carbides in directed catalysis.

7.
R Soc Open Sci ; 9(7): 220078, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35911198

RESUMO

Selective hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was studied using copper on manganese oxide octahedral molecular sieve (OMS-2) as catalysts. A range of copper supported on OMS-2 catalysts was prepared using the modified wet-impregnation technique and characterized thoroughly using powder X-ray diffraction, inductively coupled plasma optical emission spectroscopy metal analysis, Fourier transform infrared, high-resolution transmission electron microscopy and N2 sorption analyses. Process parameters for selective hydrogenation of LA to GVL were optimized using the design of experiment (DoE) approach with response surface methodology comprising a central composite design. Using the optimized conditions (190°C reaction temperature, 20 bar H2 pressure and 20 wt% Cu loading on OMS-2), up to 98% yield of GVL could be achieved in water as a solvent. Based on DoE, H2 pressure had the most influence on GVL selectivity followed by catalyst loading used for the hydrogenation of LA. The response surface methodology model also showed synergistic effect of reaction temperature and H2 pressure on the yield of GVL. 20 wt% Cu/OMS-2 catalysts were re-used up to four cycles and showed noticeable loss of activity after the first cycle due to observed leaching of loose Cu species, thereafter the activity loss diminished during subsequent recycles.

8.
J Phys Chem C Nanomater Interfaces ; 125(50): 27578-27595, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34970379

RESUMO

The effect of the sulfation of zirconia catalysts on their structure, acidity/basicity, and catalytic activity/selectivity toward the ketonization of organic acids is investigated by a combined experimental and computational method. Here, we show that, upon sulfation, zirconia catalysts exhibit a significant increase in their Brønsted and Lewis acid strength, whereas their Lewis basicity is significantly reduced. Such changes in the interplay between acid-base sites result in an improvement of the selectivity toward the ketonization process, although the measured conversion rates show a significant drop. We report a detailed DFT investigation of the putative surface species on sulfated zirconia, including the possible formation of dimeric pyrosulfate (S2O7 2-) species. Our results show that the formation of such a dimeric system is an endothermic process, with energy barriers ranging between 60.0 and 70.0 kcal mol-1, and which is likely to occur only at high SO4 2- coverages (4 S/nm2), high temperatures, and dehydrating conditions. Conversely, the formation of monomeric species is expected at lower SO4 2- coverages, mild temperatures, and in the presence of water, which are the usual conditions experienced during the chemical upgrading of biofuels.

13.
Environ Sci Pollut Res Int ; 25(32): 32001-32014, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215209

RESUMO

The simultaneous photocatalytic removal of nitrate from aqueous environment in presence of organic hole scavenger using TiO2 has long been explored. However, the use of unmodified TiO2 in such reaction resulted in non-performance or release of significant amount of undesirable reaction products in the process, a problem that triggered surface modification of TiO2 for enhanced photocatalytic performance. Previous studies focused on decreasing rate of charge carrier recombination and absorption of light in the visible region. Yet, increasing active sites and adsorption capacity by combining TiO2 with a high surface area adsorbent such as activated carbon (AC) remains unexploited. This study reports the potential of such modification in simultaneous removal of nitrates and oxalic acid in aqueous environment. The adsorptive behaviour of nitrate and oxalic acid on TiO2 and TiO2/AC composites were studied. The Langmuir adsorption coefficient for nitrate was four times greater than that of oxalic acid. However, the amount of oxalic acid adsorbed was about 10 times greater than the amount of nitrate taken up. Despite this advantage, the materials did not appear to produce more active photocatalysts for the simultaneous degradation of nitrate and oxalic acid. The photocatalytic activity of TiO2 and its carbon-based composites was improved by combination with Cu2O particles. Consequently, 2.5 Cu2O/TiO2 exhibited the maximum photocatalytic performance with 57.6 and 99.8% removal of nitrate and oxalic acid, respectively, while selectivity stood at 45.7, 12.4 and 41.9% for NH4+, NO2- and N2, respectively. For the carbon based, 2.5 Cu2O/TiO2-20AC showed removal of 12.7% nitrate and 80.3% oxalic acid and achieved 21.6, 0 and 78.4% selectivity for NH4+, NO2- and N2, respectively. Using the optimal AC loading (20 wt%) resulted in significant decrease in the selectivity for NH4+ with no formation of NO2-, which unveils that selectivity for N2 and low/no selectivity for undesirable products can be manipulated by controlling the rate of consumption of oxalic acid. In contract, no nitrate reduction was observed with Cu2O promoted TiO2-T and its TiO2-(T)-20AC, which may be connected to amorphous nature of TiO2-T and perhaps served as charge carrier trapping sites that impeded activity.


Assuntos
Carvão Vegetal/química , Nitratos/química , Titânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Ácido Oxálico , Purificação da Água/instrumentação
14.
Chem Commun (Camb) ; 54(72): 10191-10194, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30137063

RESUMO

Nuclear magnetic resonance (NMR) and total neutron scattering techniques are established methods for the characterisation of liquid phases in confined pore spaces during chemical reactions. Herein, we describe the first combined total neutron scattering - NMR setup as a probe for the catalytic heterogeneous reduction of benzene-d6 with D2 in 3 wt% Pt/MCM-41.

15.
Angew Chem Int Ed Engl ; 57(17): 4565-4570, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29446870

RESUMO

Liquids under confinement exhibit different properties compared with their corresponding bulk phases, for example, miscibility, phase transitions, and diffusion. The underlying cause is the local ordering of molecules, which is usually only studied using pure simulation methods. Herein, we derive experimentally the structure of benzene confined in MCM-41 using total neutron scattering measurements. The study reveals a layering of molecules across a pore, and four concentric cylindrical shells can be distinguished for a pore with the radius of 18 Å. The nanoscale confinement of the liquid has a major effect on the spatial and orientational correlations observed between the molecules, when compared with the structure of the bulk liquid. These differences are most marked for molecules in parallel configurations, and this suggests differences in chemical reactivity between the confined and bulk liquids.

16.
Faraday Discuss ; 206: 535-547, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930329

RESUMO

This study reports the behaviour of SCILL based catalysts in the oxidative S-S coupling of aliphatic and aromatic thiols, namely 1-butanethiol and thiophenol, to dibutyl disulfide and diphenyl disulfide. A range of ionic liquids (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) and metal supported catalysts (5% Pt/SiO2; 5% Ru/SiO2; 5% Ru/C; 5% Pt/OMS-2) were used to prepare the SCILL catalysts and all were found to be active for the reaction following the trend 5% Pt-OMS-2 > 5% Pt/SiO2 > 5% Ru/C > 5% Ru/SiO2. The presence of SCILL catalysts afforded high selectivity to the disulfide, and the activity of the SCILL catalyst was dependent on the ionic liquid used. A significant increase in the stability of all the supported metal catalysts was found in the presence of the ionic liquid, and there was no change in the selectivity towards disulfides. This demonstrated that the ionic liquids protect the active sites of the catalyst against sulfation, thus providing more stable and active catalysts.

17.
Chem Commun (Camb) ; 52(54): 8335-41, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307017

RESUMO

The Faraday Discussion on the design of new heterogeneous catalysts took place from 4-6 April 2016 in London, United Kingdom. It brought together world leading scientists actively involved in the synthesis, characterisation, modelling and testing of solid catalysts, attracting more than one hundred delegates from a broad spectrum of backgrounds and experience levels - academic and industrial researchers, experimentalists and theoreticians, and students. The meeting was a reflection of how big of an impact the ability to control and design catalysts with specific properties for particular processes can potentially have on the chemical industry, environment, economy and society as a whole. In the following, we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

20.
Phys Chem Chem Phys ; 18(26): 17237-43, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27052196

RESUMO

Total neutron scattering has been used to follow the hydrogenation of toluene-d8 to methylcyclohexane-d14 over 3 wt% platinum supported on highly ordered mesoporous silica (MCM-41) at 298 K and under 150 mbar D2 pressure. The detailed kinetic information so revealed indicates that liquid reorganisation inside pores is the slowest step of the whole process. Additionally, the results were compared with the reaction performed under 250 mbar D2 pressure as well as with toluene-h8 hydrogenation using D2 at 150 mbar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA